
Gesture Recognition and Interaction

with a Glove Controller

An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Electronic Music Unit, Elder Conservatorium
University of Adelaide

July 2013

CONTENTS

ABSTRACT...

STATEMENT...

ACKNOWLEDGMENTS..

INTRODUCTION..

HISTORY AND EVOLUTION OF GLOVE CONTROLLERS..

METHODOLOGY AND PROCESSES..

1. GLOVE PHYSICAL CONSTRUCTION..

1.1 DEVICES..

1.2 PLACEMENT OF THE ACCELEROMETERS...

1.3 PLACEMENT OF TEENSY, XBEE AND BATTERY..

1.4 CIRCUIT DESIGN..

1.5 THREAD MATERIAL..

1.6 SEWING...

1.7 PROBLEMS...

2. COMMUNICATION..

2.1 NETWORK STRUCTURE..

2.2 PROTOCOL...

2.3 COMMUNICATION PROCESS..

3. INTERPRETATION..

3.1 GLOVE DATA..

3.2 GESTURE RECOGNITION..

1

2

3

4

5

18

18

19

21

23

24

26

27

30

32

32

36

39

42

42

44

4. SOFTWARE...

4.1 PD-EXTENDED & PROCESSING...

4.2 OPENFRAMEWORKS...

4.3 ARDUINO AND TEENSY LOADER...

5. INTERFACE...

5.1 FUNCTIONS OF THE PROGRAM...

CONCLUSION AND RESULTS..

APPENDIX A – SOURCE CODE..

APPENDIX B - LIST OF FIGURES...

APPENDIX C - DATA COMPACT DISC..

BIBLIOGRAPHY..

51

51

52

53

54

55

63

65

142

145

146

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

ABSTRACT

Composing and interacting with music through electronic devices mapped on the body has been

a new aspect of music this last 50 years. Technologies have improved greatly, making the

interaction with computers within the context of music very attractive.

Human communication and interaction has a lot to do with the body expression. Hands are one

of the most expressive and active parts of the body. They are our tool to interact with the

environment.

However, most the electronic devices to create music are not intuitive and they require

experience and learning. This project designs a glove controller, which allows to create a natural

human way to interact and communicate in the context of music technology.

The work in this project aims to map and recognize the expression of the hands, and their

movements and gestures to interact, create and perform music. This thesis covers the process

of creating an interactive glove controller, its communications processes and the interpretation

of the gestures of the hand movements.

1

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

STATEMENT

This work contains no material which has been accepted for the award of any other degree or

diploma in any university or other tertiary institution and, to the best of my knowledge and belief,

contains no material previously published or written by another person, except where due

reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan.

Gerard Llorach Tó , 13 July 2013

2

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

ACKNOWLEDGMENTS

Sebastian Tomczak - for his excellence as a mentor, guidance and teacher.

Narcís Parés - for his guidance and suggestions.

Stephen Whittington, Sebastian Tomczak, The Electronic Music Unit, the Elder Conservatorium

and the University of Adelaide - for providing support and resources.

Escola Superior Politècnica, Universitat Pompeu Fabra - for their teaching and knowledge, as

well as guidance and support.

Carles Llorach, Gemma Tó, Marcel Llorach - for their support, guidance, patience and

understanding.

3

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

INTRODUCTION

The first aim of the project was to create an interactive device with basic electronic components,

map the data into a computer and control music and graphics. Having in mind that interaction

requires human actions and movements, the project went into the direction of mapping the hand

actions with sensors.

Music has been expressed through dancing or with body movements throughout these lasts

centuries and probably through all of human history. The reasoning behind using gloves

controllers is that the hands are a very expressive part of the body. The vision in this project is

that music should be created and controlled intuitively, without having to consider which button

to press. The usage of accelerometers is challenging because a lot of information can be

extracted from them.

The goal of this project is to use accelerometers as capturing devices, improve the sampling

rate, recognize gestures and develop a wireless device. As most of the non-commercialized

gloves are not very aesthetic it is one of the goals to improve that aspect using conductive

thread and using as few devices as possible.

This paper will go through all the steps taken in the development of the glove and its interaction

with a computer. This will involve the physical construction of the glove, the creation of a

communication protocol, the interpretation of the glove and the software. The research about

the physical construction of the glove is related with the existing gloves. The best features of

them are taken and put together. A research about the gesture recognition will go through the

related papers. This project will approach the recognition from a different perspective as the

other papers.

4

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

HISTORY AND EVOLUTION OF GLOVE CONTROLLERS

The idea of controlling technologies with the hands has been there since the 70s. The film

Minority Report is a well-known example in science fiction1. The fact that the communication

with a computer could be done by our hand movements is fascinating. The difference about

using a device and wearing a glove is that the glove is an accessory for the hand, not an

external object that doesn't follow the body. The idea of not having to use a physical external

object that constraints the movement of the hand is one of the reasons why a glove controller is

attractive.

Some companies2 have tried to build glove controllers but none of them have been successfully

commercialized for home users or everyday use. Most of them are created for industrial or

research purposes with high prices in the market. The ones destined to the consumer market

haven't reach a lot of places mostly because of several reasons; not a lot of software is

prepared for them or there aren't applications for them, the glove is not comfortable, the system

requires intermediate software (not a plug-and-go system) and other factors.

1 Minority Report, 2002. Film. Directed by Steven Spilberg. USA: Twenty Century Fox Film Corporation.
2 Nintendo Entertainment System (Power Glove), Essential Reality (P5 Gaming Glove), Iron Will
Innovations (The Peregrine)

5

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

SAYRE GLOVE (1977)1

This was the first wired glove or dataglove. It was created by Electronic Visualization

Laboratory. It wasn't relatively expensive, it was light and provided a multidimensional control. It

used flex sensors (light based sensors with flexible tubes).

DIGITAL DATA ENTRY GLOVE (1983)2

It was the first recognized device for detecting

hand positions. It had flex sensors, tactile

sensors, orientation sensing and wrist-

positioning sensors. It was created by Bell

Labs and the main goal was to emulate a

keyboard with the hand.

Figure 1. Digital Data Entry Glove

POWER GLOVE (1989)3

Nintendo was one of the first companies to release a glove controller. It has flex sensors, a

position tracker with ultrasonic sensors and buttons on the forearm. The glove was developed

by other companies. Thomas G. Zimmerman created a prototype with flex sensors and hand

position tracking with ultrasonic sensors. Nintendo's Power Glove was based on this prototype4.

1 Sturman, D.J., Zeltzer, D. (January 1994). "A survey of glove-based input". IEEE Computer Graphics
and Applications
2 Grimes G, Digital Data Entry Glove interface device, Patent 4,414,537, AT&T Bell Labs, November
1983.
3 Mattel Co., The PowerGlove, Nintendo Entretainment System, Retrieved 2013-04-01
<www.ebay.com/bhp/nintendo-power-glove>
4 Zimmerman T.G and Lanier J, Computer data entry and manipulation apparatus method, Patent
Application 5,026,930, VPL Research Inc, 1992.

6

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 Figure 2. Power Glove

The flex sensors (carbon-based ink on plastic)

only have a resolution of 2 bits. The glove has

four flex sensors, thus 1 byte. There are two

ultrasonic transmitters in the glove and three

ultrasonic receivers around the TV monitor.

Pulses at 40 kHz are sent and the system

measures the time delay. Through triangulation

the system can determine X, Y and Z location of

the two transmitters thus, determining the yaw

and roll. The pitch rotation cannot be calculated.

The Power Glove was considered a commercial failure, it was too big and uncomfortable for its

possibilities1. The ultrasonic receivers were badly designed and could barely stand on the TV.

Also a only a few games were designed for it. Some artists use it and map their own controls2

and tutorials of how to hack them can be found3.

DATAGLOVE (1989)6

The Power Glove was based on the DataGlove. It was

developed by VPL. Young L. Harvey (a VPL researcher)

was the one that invented the flex sensors based on

optical fibers. The DataGlove was created with a

neoprene fabric with two fiber optic loops on each finger.

For each knuckle there as a loop dedicated, which

caused that the position of the knuckle would change on

users and the process of recognition would fail. The Figure 3. DataGlove

1 ABC editor, "Backwards Compatible - The Power Glove". ABC website - Good Game. Australian
Broadcasting Corporation (ABC). 19 May 2008. Retrieved 2009-06-06.
2 DubSpot, 'Ableton Live + Nintendo Power Glove: Meet Controllerist Yeuda Ben-Atar aka Side Brain @
Dubspot', video, YouTube, Oct 23 2012, Retrieved 2013-05-08.
3 How to build an instrumented glove based on the Powerglove flex sensors. PCVR 16 pp 10–14.
Stoughton, WI, USA: PCVR Magazine, 1994

7

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

resolution of the flex sensors has 8 bits for each one.The DataGlove was expensier than the

Power Glove as it was not designed for the home user ($9000). It was the first commercially

available glove.

CYBERGLOVE (1990)1

This device was the glove that came next. CyberGlove has been a line of products by

CyberGlove Systems LLC. The company kept working on the glove and released different

products, such as:

Figure 4. CyberGlove II

CyberGlove II2 has a lot of flex sensors,

between 18 or 22, with a resolution of less

than 1 degree. The 22-sensor model has

three flex sensors per finger. The sampling

rate is 90 Hz and it is wireless. The receiver

can support two gloves working at the same

time. The glove itself looks like a normal

glove but the battery is placed in a wrist band

which breaks with the aesthetic of the glove.

CyberGrasp3 has a very accurate mapping of the

movement of the fingers. It has 5 actuators for each

finger that also allow to make the glove move from the

computer. It can apply until 12N of force. It is a

complement of the CyberGlove II.

Figure 5. CyberGrasp

1 Kessler G.D, Hodges L.F, Walker N., Evaluation of the CyberGlove as a Whole Hand Input Device,
ACM Transactions on Computer-Human Interaction. 2(4), 1995, pp. 263-283.
2 CyberGlove Systems, CyberGlove II Wireless Glove, 2010, Retrieved 2013-04-05,
<cyberglovesystems.com/?q=products/cyberglove-ii/overview>
3 CyberGlove Systems, CyberGrasp, 2010, Retrieved 2013-04-05,
<cyberglovesystems.com/products/cybergrasp/overview>

8

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 6. CyberForce

CyberForce1: it is a complex armature based on the

CyberGrasp. The system provides a 6 degree control (6

DOF).

5DT DATA GLOVE(1999)2

Fifth Dimension Technologies has some glove controllers:

5DT Data Glove 5 and 14 Ultra: 5 or 14 flex sensors, with a 12 bit resolution. The sampling rate

is 75 Hz. The 5DT Data Glove 5 has one flex sensor per finger and a 2-axis tilt sensor. It can

detect pitch and roll. The sampling can be up to 200 samples per second.

The 5DT Data Glove 16 has 14 flex sensor but it doesn't have a tilt sensor. It maps the fingers

better than the last one. The sampling frequency is 100Hz.

All this gloves have a wireless kit that consists in a belt with a battery. The gloves are connected

through wires.

1 CyberGlove Systems, CyberForce Force Feedback System, Retrieved 2013-04-05,
<cyberglovesystems.com/products/cyberforce/overview>
2 Fifth Dimension Technologies, The 5th Glove, Retrieved 2013-04-05,
</www.5dt.com/hardware.html#glove>

9

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 7. 5DT Data Glove with the wireless kit.

P5 GLOVE (2002)1

It is an affordable glove controller ($60). It has 6 degrees of

tracking: X, Y, Z, Yaw, Pitch and Roll that are tracked with an

infrared control receptor. It also has bend sensors on each finger

and 4 buttons. The ownership and production of this glove has

been going from one company to another. There are few games

prepared for the glove, although it is a good mouse and joystick

emulator2.

Figure 8. P5 Glove

1 Essential Reality, P5 Gaming Glove, 2009, Retrieved 20013-05-08
 <www.gizmag.com/go/1148/>
2 Biotecmexico, 'P5 Glove', video, YouTube, 7th of Nov 2007, Retrieved 20013-05-08

10

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

SHAPE HAND (2005)1

This device is another wireless glove with flex sensors, 1 per finger. The company promotes its

flexibility as it can be used in different glove sizes and also left and right with the same device.

ShapeHandPlus includes a flex sensor for the arm, so movements and positions of the arm can

be detected. The sampling rate changes depending on the computer it is used. In an average

laptop it can reach 100Hz.

Figure 9. Shape Hand in different positions.

Figure 10. Shape Hand with the arm accessory.

1 Measurand Inc, ShapeHand, 2009, Retrieved 20013-05-08
 <www.finger-motion-capture.com/shapehand.html>

11

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

PEREGRINE GLOVE (2010)2

This is one of the gloves that its company is still doing

marketing and is active. It has a completely different

approach than the others. This glove doesn't try to track

motion or hand positions. It is full of touch sensors that act

as buttons. The user can use the glove as a keyboard and

map all kind of actions from it. Each glove is customizable

because you can store the data in the device that connects

the glove with the computer. It has 30 touchpoints.

The product offers tutorials about how to write letters and

use it. It is not relatively expensive ($150).

Figure 11. The Peregrine

INITION1

The company collects all kind of interactive motion capture devices. It sells some of the gloves

mentioned before but it also has some others, such as:

 Figure 12. Pinchglove.

Pinchglove2: detects when two or more fingers make

contact. It uses a RS232 communication protocol, 9600

and 19600 baud rates and optional accessories such

as wireless and motion tracker mounts.

Didjiglove3: the glove uses bend sensors. Each sensor has a 10 bit

resolution and 200 samples per second.

Figure 13. Didjiglove

2 Iron Will Innovations, The Peregrine, 2012, Retrieved 20013-05-08 <theperegrine.com>
1 Inition Co. 2001, Retrieved 2013-04-28, <inition.co.uk/3D-Technologies/productsection/43>
2 Inition Co., Fakespace Labs PINCH Glove, Retrieved 2013-04-28, <inition.co.uk/3D-
Technologies/fakespace-labs-pinch-gloves>
3 Inition Co., Didjiglove, Retrieved 2013-04-28, <inition.co.uk/3D-Technologies/didjiglove>

12

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 14. DGTech Vhand

DGTech Vhand1: it has a 3 axes accelerometer and has the bend

sensors internally embedded.

X-IST Data Glove2: 24 sensors can be integrated in the

glove: bend sensors, pressure sensors and 2 axis tilt

sensors. It needs a physical processing box to transfer the

data to the computer through USB. 100-200 Hz of sampling

rate and 10 bit resolution. This glove has a variant, the X-IST

MIDIGlove, that maps the data into MIDI through the same

sensors.

Figure 15. X-IST Data Glove

IGLOVE/ACCELEGLOVE3

This glove uses 6 accelerometers (fingers and palm) with a sampling rate of 35Hz. The iGlove is

a patented accelerometer technology detects motion of the fingers, hand, wrist and arm that is

now being refined by health institutes4.

1 Inition Co., DGTech Vhand, Retrieved 2013-04-28, <inition.co.uk/3D-Technologies/dgtech-vhand>
2 Inition Co., X-IST Data Glove, Retrieved 2013-04-28, <inition.co.uk/3D-Technologies/x-ist-data-glove>
3 Hernandez-Rebollar, Jose L., Kyriakopoulos, N., Lindeman, Robert W. (2002) The AcceleGlove: a
whole-hand input device for virtual reality
4 Abolfathi, Peter P., Interpreting sign language is just the beginning for the AcceleGlove open source
dataglove, Gizmag website, July 23, 2009, Retrieved 2013-06-14

13

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 16. Acceleglove.

The acceleglove is no longer on sale and can only

be ordered as a custom glove to the company that

owns it. There isn't much information about the

glove in the official web page but there is

information on their youtube channel1.

The company has developed software to control

the mouse and other programs such as CAD.

1 AnthroTronix Inc., AnthroTronix YouTube Channel, YouTube, Retrieved 2013-06-14

14

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

NON-COMMERCIALIZED PRODUCTS

Figure 17. KeyGlove.

THE KEYGLOVE1

The keyglove is based in touch sensors. It has 37 touch

sensors and uses Teensy++. It has a tutorial2 to teach how to

use the glove as a keyboard. It also has a tilt sensor.

BEN'S GLOVE OF POWER3

The glove uses arduino with an accelerometer and a

gyroscope. Also it has conductive threading into the

fingertips and palm to recreate buttons. The glove was

created to help interaction with kinect.
Figure 18. Ben's Glove of Power.

Figure 19. Clove 2.

CLOVE 24

This device has multiple touch sensors to recreate a

keyboard. It uses a bluetooth device so it is a wireless

device. The web page demonstrates how to build one.

1 Rowberg, J., "keyglove, freedom in the palm of your hand", Keyglove website, Retrieved 2013-05-09
2 Rowberg, J., Keyglove Promo #01, video, Vimeo, 2013 Retrieved 2013-04-05
3 The Ben Heck Show, Episode Power Glove for Xbox, video, Revision 3 Internet Television March 6,
2012, Retrieved 2013-04-18
4 Cemetech, Clove 2 (Cemetech Bluetooth Dataglove), project site, July 8, 2008, Retrieved 2013-04-18

15

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

MISTER GLOVES5

This glove improves the functionalities of touch gloves like

Peregrine. It has included an accelerometer that allows mouse

simulations as well as keystrokes. Their project web page is very

detailed. It is wireless and has audio feedback on the glove and

also one flex sensor. It uses its own USB protocol and its a very

complete interactional glove.

Figure 20. Mister Gloves.

There are lot of more open source projects out there, like this ones above, but I included the

most significant ones.

The most commonly used sensors are flex sensors, tilt sensors, accelerometers, gyroscopes,

external positioning sensors and touch sensors. Looking through history the first sensors used

where the flex sensors, which they are still currently being used.

The ones that work with touch sensors fall into a different category as they require a physical

contact in the device (haptics). The information to process about this gloves is much more

simpler as the glove is just a bunch of button emulators put together. The Peregrine is one of

the commercialized gloves that has reached some video game users as it allows the user to do

commands faster than writing in the keyboard.

The other category where the gloves can be classified is if they use or not an external device to

provide information about positioning and rotation. This will restrict the user into a determinate

space, as they depend on the external receiver. The P5 Glove is one example that combines

infrared sensors, flex sensors and buttons. This is one of the other gloves that has been

commercialized for video game users and that is still in the market. It is an improved version of

the Power Glove, as it is based in the same sensors.

5 Chen, S., Levine, E., Mister Gloves - A Wireless USB Gesture Input System, project site, 2010,
Retrieved 2013-04-18

16

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The last category would be if the device is wireless or not. The fact of using a wireless device

will mean that the glove will have more components, like a wireless device and a power supply.

The advantage a wireless system has is that will allow the user to be wherever he wants while

he keeps himself into the range of the receiver. It should be more comfortable as there won't be

any cables around.

Only The Peregrine and the P5 Glove are still active in the market for non-professional users.

All the other commercialized gloves have high prices, above $400, and are intended for other

companies or research.

They combine different sensors, gather different information but they have some common

features. The gloves reach up to 300 Hz sampling rates and 10-12 bits resolution per sensor.

The wireless gloves require an extra device attached to the body, if they didn't before. Most of

the non-commercialized gloves are not aesthetic.

The primary method of data acquisition on glove controllers is based on flex sensors or contact

sensors. Accelerometers, gyroscopes and tilt sensors usually act as a reinforcement, but only

one of the commercialized gloves uses only accelerometers. The Acceleglove has a very low

rate (35Hz) and doesn't have any software that is able to recognize gestures.

17

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

METHODOLOGY AND PROCESSES

This section explains all the processes and steps that has been followed to build the glove itself,

the creation of a network protocol and the research and development of gesture recognition

based on accelerometers.

The first section explains the devices it uses, the design of the electronic circuit, sewing

conductive thread and the problems that arose. The second section talks about the process of

communication and the advantages and disadvantages of using different protocols. The third

section goes through all the research and methods of gesture recognizing and describes how to

interpret the data from the glove. The fourth section mentions briefly the IDEs used to write the

code for the microcontrollers and the the software. The last section explains the functionalities

of the graphical interface.

1. GLOVE PHYSICAL CONSTRUCTION

There are a number of sensors and components that are used to construct the glove. Each

component has been chosen based on a combination of cost analysis, ease of use and

integration, and physical constraints of size.

The first and most important device is a programmable microcontroller. As a microcontroller,

Teensy1 will be the best option, as it is much smaller than Arduino2. For transmitting the data the

XBee3 series will give a wireless connection. This will avoid the necessity of being near the

computer.

1 Coon, R., Stoffregen, P., Teensy, PJRC Electronic Projects Components Available Worldwide, 2012 -
Retrieved 2013-04-05, <www.pjrc.com/teensy/>
2 Banzi, M., Cuartielles, D., Zambetti, N., Arduino, 2012, Retrieved 2013-04-05, <www.arduino.cc/>
3 Digi International Inc, XBee, 2012, Retrieved 2013-04-05, <http://www.digi.com/xbee/>

18

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The Teensy only has 12 analog inputs, which is why the glove will only be able to use four

accelerometers. The idea of introducing a fifth accelerometer and using a multiplexer would be

a problem, as the multiplexer may not fit in the glove and that it would involve more threading.

1.1 DEVICES

TEENSY 2.0

This device is a programmable microcontroller. It has 25 digital I/O, 12

analog inputs and 7 PWM. It works at 16 MHz, has 32kB of flash memory,

2.5kB of Ram and 1 kB of EEPROM. It operates at 5V and can consume

currents between 4 and 20mA approx. depending on its use. It is

programmed using the Arduino IDE and the Teensy Loader.

Figure 22.
Teensy 2.0

19

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 23.
Accelerometer

ACCELEROMETER ADXL3351

Provides information about the acceleration of 3 axis. It accepts input

voltages of 3.3V and 5V. It measures up to ±3g. The output signal is

analog. The typical bandwidth rates are 1600 Hz for the X and Y axis

and 500 Hz for the Z axis. It has a sensitivity of 300mV/g. It consumes

350μA.

XBEE SERIES 12

This XBee has a PCB trace antenna instead of a chip antenna at 2.4GHz

which makes it smaller. The input voltage is 3.3V and operates at 50 mA. It

can operate at 250 kbps and can reach up to 100m. This device allows

point-to-point and multipoint networks. It is not compatible with XBee Series

2. This model has been taken out of the market and replaced by another.
Figure 24. XBee

S1

Figure 25. XBee
Explorer Regulated

XBEE EXPLORER REGULATED3

Regulates the incoming voltage for the XBee chip. It also has activity leds

that indicate power, receiving, transmitting and RSSI. It makes a 5V

signal into a 3.3V signal for the XBee. This model has been taken out of

the market and replaced by another.

1 Little Bird Electronics , Triple Axis Accelerometer Breakout - ADXL335, 2012, Rerieved 2013-04-05,
<littlebirdelectronics.com/products/breakout-3-axis-analog-accelerometer-adxl335>
2 Sparkfun, XBee 1mW Chip Antenna - Series 1 (802.15.4), 2012, Rerieved 2013-04-05,
<www.sparkfun.com/products/8664>
3 Sparkfun, XBee Explorer Regulated WRL -09132, 2012, Rerieved 2013-04-05,
<www.sparkfun.com/products/9132>

20

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

POLYMER LITHIUM ION BATTERY4

It is a very light and slim battery. It outputs a voltage of 3.3V at

2000mAh. It includes a protection circuit for over voltage, over current

and minimum voltage. It has to be charged with a specific battery

charger. Figure 26. Polymer
Lithium Ion Battery

1.2 PLACEMENT OF THE ACCELEROMETERS

As the glove will only have four accelerometers it is important to research about where to place

them. The part that contains more information about the motion of the hand are the fingertips.

Placing the accelerometers in the fingertips will allow the mapping of finger movement as well

as hand movement and hand positions.

It is important to differentiate between the two types of recognition that can be done on the

hand. The hand can be in a static position and give information about a certain position and

orientation of the fingers (static). The other information that can be obtained is based on

dynamic information, thus when a movement is done and it is interpreted as a gesture.

Analysing the problem from the dynamic perspective two different dynamic informations can be

obtained: the wrist and the fingers. In almost all humans, the least independent finger is the ring

finger. Usually when the middle finger or the pinky are moved the ring finger follows its

movement. Also the movement in the pinky finger makes the ring finger follow.

The placement on the thumb, index finger and middle finger is almost mandatory, so last

accelerometer will be on the ring finger or the pinky.

4 Sparkfun, Polymer Lithium Ion Battery - 2000mAh PRT-08483, 2012, Rerieved 2013-04-05,
</www.sparkfun.com/products/8483>

21

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The following figure analyses different finger configurations of a hand, showing the static

information that can be obtained.

Working with accelerometers allows to know the relationship between fingers, but not their exact

position, only the orientation. For example, positions 1.6, 2.2 and 2.3 of Figure 1 might be

confused because the information the accelerometers transmit is very similar. The vectors

between the thumb and the other fingers is 90º.

22

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

This are the positions that could be recognizable whilst omitting the following finger data:

No thumb: 1.0, 1.2, 1.4, 1.6, 1.8, 2.0

No little finger: 1.0, 1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 2.2, 2.3. 2.4

No ring finger: 1.0, 1.1, 1.2, 1.3, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5

From the static point of view avoiding to place an accelerometer in the ring finger would allow to

collect more static information. The numbers from 0 to 5 will be recognizable, whereas avoiding

the pinky finger it would only have been able to capture from 0 to 4.

Using accelerometers in the thumb, index finger, middle finger and pinky will make the most of

the hand information.

1.3 PLACEMENT OF THE TEENYS, XBEE AND BATTERY

The less flexible part of the hand is its back. That is where the rest of the components will be

placed. As the teensy will have 12 incoming connections from the fingers it is the device that

has a priority above the others. The Teensy will be located right below the end of the index and

middle fingers. This will make it easily accessible for the accelerometers.

To the right of the Teensy the XBee will take advantage of the space left, because the battery

will occupy the rest of the back of the hand.

The most important thing that it has to be taken into account is where the threads will have to

go. As the thread is not isolated, crossings will have to be avoided as much as they can be. Also

large connection might involve more problems and interferences or undesired contacts between

other threads.

23

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

1.4 CIRCUIT DESIGN

The use of the back of the hand is also justified because of the non-isolated threads, as it is the

less flexible part of the hand and undesired contacts will not happen.

On the palm of the hand the voltage and ground of the accelerometer will be threaded. It is very

important to take into consideration that when the fingers are moved, the voltage threads never

establish contact with the ground threads as they will create a short circuit.

To have a clear idea of how the circuit was going to be and know where the crossings were

going to happen a 3D model of the hand circuit in Autodesk Maya was designed. The first

design (Figure 2) is done with the 3D Paint Tool Brush. The rest of the design was done with the

normal Paint Brush because of a lack of computational power (Figure 3).

The yellow, green and blue are the Z, Y and X axis of the accelerometer respectively. The black

thread is the ground and the red one is the voltage. Purple and cyan are the transmission and

receiver connexions of the XBee.

The crossings between voltage and ground are done in the junctions of the fingers. When the

fingers are bended the glove folds where the thread is, covering it from undesired connections.

The threads always try to follow the natural folds of the hand for the same reason as before (see

Figures 28 and 29).

When threading the fingers, their laterals cannot be always used because they could touch

other lateral finger connections.

All the threading paths were studied carefully with the movements of the hand. It is important to

bear in mind that the fingers can reach a lot of places in the palm of the hand and other fingers.

The voltage and ground threads should never establish contact. This are the threads that go on

the palm of the hand and in the lateral and inside of the fingers.

24

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 28. First maya prototype with the 3D

Paint Tool Brush. Right hand with Teensy and

accelerometers.

Figure 29. Maya circuit design with the paint

brush. Left hand with Teensy, XBee and

accelerometers.

25

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

1.5 THREAD MATERIAL

There are two different types of conductive thread in the market nowadays: stainless steel

conductive thread and plated silver conductive thread. Their characteristics, advantages and

disadvantages will be explained in this section.

Figure 30. Stainless steel
thread

STAINLESS STEEL THREAD1

This one is not suitable for machine sewing as it is much thicker.

It is composed by stainless steel fibers spun together. This

makes it somewhat 'hairy'. It cannot be soldered but it doesn't

break in contact with a soldering iron. Fibers burn when a short

circuit happens.

PLATED SILVER THREAD2

It is a finer thread that can be used for a sewing machine. It has

a Nylon core and it is easier to sew as it is thinner and more

compact (not hairy). It breaks when it touches the soldering iron

and it doesn't react to short circuits.
Figure 31. Plated silver thread

1 Sparkfun, Conductive Thread (Thin) - 50' DEV-10118, 2012 - Retrieved 2013-04-05,
<www.sparkfun.com/products/10118>

2 Sparkfun, Conductive Thread 117/17 2ply DEV-08544, 2012 - Retrieved 2013-04-05,
<www.sparkfun.com/products/8544>

26

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

1.6 SEWING

This process has followed some of the instructions of the e-Textile youtube channel1. Some of

the techniques and thread selection have been really useful in the construction of the glove.

The stainless steel thread was the first option as it was cheaper than the plated silver thread.

They both have a resistance that can be negligible.

As solder could be applied to the stainless steel thread it was much easier to sew the

connections with the devices. With the plated silver thread the connection needed to be done

sewing a lot around the connection. The result was negative because the devices weren't stuck

to the cloth and the quality of the connections changed when the fingers moved.

Sewing and working with the plated silver thread was much easier, as it isn't 'hairy' and much

thinner, more like a textile thread. A lot of care had to be taken with the stainless steel thread to

leave enough space between threads and to cut all the little hairs that could create an undesired

connection between paths.

PARALLEL PATHS

When sewing parallel paths the method shown in Figure 4 is used whenever it is possible. This

technique is done to reduce the risk of loose fibers from one path touching the other path.

SEWING THE CONNECTIONS

For the stainless steel thread, the connections are made sewing twice around the connection

hole and then soldering. The ending of the thread can be cut very close to the solder material.

At the beginning the solder was not used properly and the threads weren't stuck by the solder.

1 Bruning, Lynne, eTextile Lounge, channel, YouTube

27

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The technique (pull-and-solder) was improved by pulling the thread as the solder was applied.

This way the thread was stuck in the solder and didn't slip away. This technique requires

practice and is complicated. It involves pulling the end of the thread and applying solder with

one hand as the other holds the soldering iron.

With the plated silver thread the connection has 4 or 5 times turns around. The connections

were doing bad contact as the tension of the device with the threads changed. The connections

were reinforced with more sewing. The end of the thread is sewn again to the fabric and finished

with a typical nod on the fabric.

SEWING THE PALM OF THE HAND

The paths that are on the palm of the hand try to follow the natural folds of the hand. This

avoided that when the hand closed bad connections were made. The advantage of using the

stainless steel thread is that when voltage and ground threads make contact the fibers burn and

create a hot point on the glove. This was an advantage because loose fibers were burnt if they

were creating a bad connection.

Figure 33. Crossing sewing technique. Figure 34. Parallel lines sewing technique.

28

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 35. Back of the right glove. Figure 36. Palm of the right glove.

Figure 37. Back of the left glove.

Figure 38. Palm of the left glove

29

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

1.7 PROBLEMS

In this project, one of the goals was to design a functional and aesthetic glove. Using conductive

thread could make a glove without standard electrical wiring. The use of conductive thread

brought some problems.

The first problem was threading the connections. There are specific devices that have

connection holes prepared for conductive thread1. These devices are usually bigger and this

could be an issue given that there isn't much space in the glove. In this project the devices are

not prepared for conductive thread. The holes are small and very close to each other.

If a knot was made at the end of thread, the thread left was usually too long and could establish

contact with the surrounding connections. Applying the technique 'pull-and-solder' made

possible to cut the thread near the soldered connection, as the thread wouldn't slip away

through the connection hole.

Some of the connections were made and the teensy didn't recognize the signal properly. After

taking out the thread and sewing again some of them worked properly. Even if looking closely

non errors could be seen when it didn't work. That might be cause by the tiny loose fibers of the

stainless steel thread.

1 Buechley, L., SparkFun Electronics, LilyPad Arduino, Retrieved 2013-04-12,
<arduino.cc/en/Main/arduinoBoardLilyPad>

30

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

In some cases (little finger right hand, XBee) the voltage

and ground circuits were very long. This fact added to a

weak connection between threads made some of the

signals unsteady and very variable. The XBee lost power

randomly which made the communications not to work

properly.

Sewing the connections took up to 6 hours of work per

finger.

Figure 39. Glove with hook-up
wires

Due a lack of time, the connections that weren't sewn properly were taken out and were

substituted with hook-up wire1. The glove achieved full functionality but lost the aesthetics.

In the next section the connection with the glove and the computer will be explained. Creating

the proper communications is a very important step, as they will determine the data

transmission rates.

1 SparkFun, Hook-up Wire, 2012 - Retrieved 2013-06-05, <https://www.sparkfun.com/products/8022>

31

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

2 COMMUNICATION

The glove controller makes use of wireless communication architecture, made up of software,

protocol and hardware components. This section will examine these components and how they

can be set up, giving rise to a sturdy yet efficient wireless communication setup.

The devices used are the combination of an XBee S1 and the XBee Explorer Regulated. The

last device only regulates the incoming voltage and gives visual signals of the communication

processes. The XBee S1 is a device for peer-to-peer or point-to-multipoint connections. It uses

the IEEE 802.15.4 networking protocol. The XBee used has a chip antenna integrated and it

can reach up to 100m.

2.1 NETWORK STRUCTURE

The baud of the XBee, Uart and Serial is set at 38400 bps for the receiver device. The

transmitters work at 19200 bps. The problem when receiving the data is that there is no

synchronization between the two transmitters. The software isn't able to interpret the incoming

data because the bytes are not in order.

32

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Nevertheless a communication protocol could be designed to fix this. For example: the first bit

indicates the transmitter thus the data can be identified by the receiver and organized:

0 . xxxxxxx for the messages from the left hand and 1 . yyyyyyy for the ones from the right hand.

This would reduce the quantity of usable bits to 7 because one would be used to indicate from

which hand the message is coming from.

The other solution would be to send the data from one transmitter to the other and make only

point-to-point connections. This way the data can come in order to the last receiver.

This network is not designed for a protocol that sends confirmation messages, handshaking

(communication messages) or requests more data. Using MIDI or Serial received by Pd-

Extended1 the data is not buffered and discarded if the program doesn't have time to process it.

However if working with C++ the data is buffered and received with a big delay if the program

doesn't run at the same speed as the incoming data.

To create request for more data once the buffer is free or almost empty a circular network can

be designed as the XBee devices work as point-to-point. The first glove sends to the second,

the second to the computer, the computer to the first glove and so on:

1 Puckette, M., Pd-Extended, Pure Data, Retrieved 2013-02-02, <puredata.info/downloads/pd-extended>

33

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

CONFIGURING THE XBEES

To configure the XBee modules it's necessary to use a program called X-CTU1. It's not easy to

configure the XBee. I tried first with Windows and I couldn't configure it properly. I could

configure them with Linux using wine (which allows Windows software to run on linux).

The XBees are configured in the beginning all with the same addresses2. The parameters that

are modified in the XBee are the baud rates and the addresses. This are the parameters related

to the network addresses:

ID - PAN ID: 16 bits for an identification number for the network.

DL - Destination Address Low: 16 bits for the destination address.

MY - Source Address: 16 bits for the source address.

The XBee devices are set up with this default parameters:

PAN ID: 3332

DL: 0

MY: 0

1 Digi International Inc, X-CTU Software, 2012, Retrieved 2013-04-21, <www.digi.com/support/productdetail?
pid=3352&osvid=57&type=utilities>

2 Fakih Hamad, O., Analog, Digital and Multimedia Telecommunications: Basic and Classic Principles,
Xlibris Corporation

34

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Now because there is a XBee that has to receive and send at the same time it is needed to

change the configuration of the module. The first module only acts as a transmitter. It will be set

like this:

DL: 01

MY: 0

The second one, that acts as a receiver and sender at the same time will have this settings:

DL: 10

MY: 01

The source address of the second XBee is receiving data from the destination address from the

first device. The last device receives data from the second and is configured to send information

to the first. The last one, that only receives will have this configuration:

DL: 0

MY: 10

First XBee Second XBee Third XBee

DL: 01 DL: 10 DL: 0

MY: 0 MY: 01 MY: 10

This will actually create a loop, as the last module has been configure to send data to the first

XBee. This will be useful in case a handshake is needed.

The XBee hardware setup creates a useable wireless, multi-point network that is ready to be

used for data transfer. However, in order for this to be efficient and fully functional, a suitable

protocol will either have to be chosen or developed.

35

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

2.2 PROTOCOL

Implementing a set of rules for the messages that are going to be transmitted is essential to

achieve high baud rates. The information needs be space-efficient. Coding and decoding from a

specific protocol will be part of this section, as well as developing the protocol.

MIDI1

The greatest advantage of using MIDI is that there is no need to work with serial and thus avoid

subsequent compatibility issues with drivers. The main problem that MIDI brings is that it has

only 16 channels. If we are working with 4 accelerometers in each hand it means that we'll have

24 different signals. This could be fixed by fitting two signals in one MIDI message and then

decoding it. Tests were done and there rate obtained was 250 samples per second when

sending 6 signals (2 accelerometers) using Pd-Extended.

SERIAL2

The main advantage of using a serial connection is that a protocol can be developed, thereby

allowing the data to be sent as specifically formatted messages. It is more flexible and gives

option to more possibilities whereas MIDI messages have a structure, thus information has to fit

into this structure.

The main problem is that some drivers have to be installed sometimes and the configuration

might be difficult. The devices will come with different names depending on the computer and

OS. Serial connections might be blocked by default and the user would have to manually set

them up.

Each glove was simulated with one accelerometer to check functionality. The rate is 360 with 6

channels of information using Pd-Extended, which is superior than MIDI. This is as expected, as

there aren't any redundant bits.

1 MIDI Manufacturers Association Inc, MIDI Messages, Retrieved 2013-05-06
2 Pinouts.ru, RS-232 and other serial ports and interfaces pinouts, 2009, Retrieved 2013-05-05,
<pinouts.ru/SerialPorts>

36

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Additional problems with serial include that Teensy uses the serial communication standard RS-

232. This method has a software handshaking that uses the decimals 17 and 19 to send XON

and XOFF (they indicate if the device is ready to receive or it's full). The standard also uses the

decimal 3, 26 and 28 for other purposes. Those numbers cannot be used.

Different systems of coding the data have been proposed. This is just a brief mention of the

different protocols proposed. The protocol used is explained in depth. The following paragraphs

indicate the usage of bytes. Each byte contain 8 bits whose can be 0 or 1. Each bit represents

different information inside a byte.

· Using 2 bytes: 1 byte to tell the channel where data is being transmitted and 1 byte to send the

data.

x . yyyyy. zz → x indicates type of byte, y indicates the channel, z is the variable to give

more range to the data byte.

i . jjjjjjj → i indicates type of byte, j represents the data.

The data can go from 0 to 512.

+Speed - Resolution +Byte control

· Using 3 bytes: same as MIDI but using one more bit for channels.

- Speed +Resolution +Byte control

· Using 5 bytes for a finger (3 streams):

xx . yyy . zzz → x indicates type of byte, y indicates channel, z used in third byte.

aa. bbb . ccc → a indicates type of byte, zzz, bbb, ccc variable to give more range to the

following bytes.

i . jjjjjjj → i indicates type of byte, j represents data.

i . jjjjjjj → i indicates type of byte, j represents data.

i . jjjjjjj → i indicates type of byte, j represents data.

+Speed +Resolution -Byte control

The fastest method is the last one and the used in the program. Only the first byte of the 5 will

be affected by the software handshaking of the RS-232 serial communication standard because

the rest will be bigger than 64. The bytes unusable will be: 00000011, 00010001, 00010010,

37

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

00011010, 00011100. This means that the problem will be when the data of the x axis of the

third finger of the right hand is above 127 and bellow 384.

To resolve this, special bytes are going to be used:

00000011 (3) → usage: the value of the last seven bits of the third byte will added to 128*3 →

Substituted for 00000111 (7) → This byte would only be used hypothetically when the

accelerometer value is above 128*7 (896)

00010001 (17) →usage: the value of the last seven bits of the third byte will added to 128 →

Substituted for 00010110 (22) → This byte would only be used hypothetically when the

accelerometer value is above 128*6 (768)

00010001 (19) →usage: the value of the last seven bits of the third byte will added to 128 →

Substituted for 00010111 (23) → This byte would only be used hypothetically when the

accelerometer value is above 128*7 (896)

00011010 (26) →usage: the value of the last seven bits of the third byte will added to 128*2 →

Substituted for 00011110 (30) → This byte would only be used hypothetically when the

accelerometer value is above 128*6 (768)

00011100 (28) →usage: the value of the last seven bits of the third byte will added to 128*4 →

Substituted for 00011111 (31) → This byte would only be used hypothetically when the

accelerometer value is above 128*7 (896)

38

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Example of a simple message (coding and decoding):

Structure Message Coded message Decoded message

00 . yyy . zzz

01 . bbb . ccc

1 . jjjjjjj

1 . jjjjjjj

1 . jjjjjjj

Channel 1

X axis: 192

Y axis: 127

Z axis: 385

00 . 001 . 001

01 . 000 . 010

1 . 1000000

1 . 1111111

1 . 0000001

Channel: 001 = 1

X axis: 001 * 128 +
1000000 = 128+64 =
192

Y axis: 000 * 128 +
1111111 = 0 +127 =
127

Z axis: 010 * 128 +
0000001 = 128 * 2 +
0000001 = 384 + 1 =
385

2.3 COMMUNICATION PROCESS

With these kind of networks bottlenecks can happen if they are not taken care of. In Figure 32

the bottleneck might happen in the receiver if the baud rates of the XBee devices in the gloves

are too high. In Figures 33 and 34 the bottleneck might happen in the glove that has to receive

data from the other glove and send all the data.

The first communication processes didn't involve any kind of handshaking from the final

receiver. Using the network designed in Figure 33 the data from the first glove will be sent

straight away by the second glove. Once the first glove finishes it sends a synchronization byte

and the second glove sends its data.

The first glove will have a delay in its program to wait for the second glove to send the data.

This delay can be adjusted to find the highest samples per second rate without compromising

the data of the second glove.

39

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The final communication process is done with C++, thus the diagram in Figure 34 is used. The

communication process will be similar as the one explained above. Instead of having a delay in

the first glove, it will wait for a synchronization byte from the final receiver. The final receiver will

send this byte before the buffer in the serial connection is empty. This way the best baud rate

will be achieved.

The advantage of serial communication is obvious if the size of the packets is compared with

MIDI. The size of the network packets of this protocol is much smaller than the size of the MIDI

messages needed to transfer the same information. MIDI would take three bytes to transmit

only one stream of data. Each glove has twelve streams of data, meaning that in total MIDI

would need 72 bytes.

40

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The section above determines the protocol and communication channel that is used. This will

have an impact in the software as it will have to decode the data accordingly. It is important to

be able to reach high levels of transmission rates because the system will run in real time. The

rate of the incoming data can always be slowed down if needed (the software might have

difficulties processing too much information).

41

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

3 INTERPRETATION

Once the format in which the data is going to arrive is determined, the first step would be

decoding the information to obtain the raw data. A filter might be useful to regulate the data. In

this project an exponential moving average (EMA1) is used to reduce noise. This filter averages

the raw data to obtain a better state of the accelerometer.

This is one of the most important parts of the project, as the virtual possibilities of the glove will

be determined by this section.

3.1 GLOVE DATA

Each accelerometer transfers data of the acceleration on each axis, X, Y and Z. Each glove has

4 accelerometers. That means that the glove will transfer 12 streams of data, and that two

gloves will transfer 24 streams.

ORIENTATION OF THE FINGERS (static information)

When the hand is still, the accelerometers will measure the gravity. This will proportion

information about the orientation of each accelerometer in relation to the gravity (floor).

Orientation of the fingers can be achieved.

1 Tham. M.T., Dealing with measurement noise (A gentle introduction to noise filtering), School of
chemical Engineering and Advanced Materials, Newcastle University

42

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

POSITION OF THE FINGERS (static and/or dynamic information)

With the orientation of each finger the position of the fingers in the hand is obtainable. The 3D

vectors of each accelerometer will preserve the same relationship even if the position changes

its orientation. Knowing the position of the fingers in the hand when it is still doesn't depend on

the orientation. There will be 6 relations between fingers. This can be calculated by this formula:

Where N is the number of accelerometers.

Even if the whole hand moves in the same direction the position of the hand will be know, as it

would be the same as changing the gravity point. In Figure 11 the measured acceleration would

represent the new gravity point.

43

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

ORIENTATION OF THE HAND (static information and user input)

To interpret the orientation of the hand it is needed to know the relation between a finger and

the palm of the hand. The hand has to be still (static information). For example if the hand is in

the position shown in the case 2 of Figure 9, the orientation of the hand will be the same as the

middle finger.

This kind of information should be an input of the user when storing a static position of the hand.

As shown in Figure 11 the orientation of the hand and fingers can be confused when the hand is

in motion.

3.2 GESTURE RECOGNITION

In the previous cases, all the information that could be obtained was related to the static

information of the accelerometers or the relation between themselves. Gesture recognition is

about movements of the hand in the space in relation to time and how to identify them.

44

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Recognizing the gestures will require certain steps and processes. The first step is to determine

when a movement starts and ends. The next steps and processes will involve algorithms and

signal processing that will classify and interpret the captured gestures.

START/END OF THE GESTURE

Most of the gesture recognition systems1 have the user tell when the movement starts and

ends. This facilitates the gesture recognition because the system won't have to be rejecting

random gestures that are not identifiable. If the gesture recognition system is not having a user

input, it will have to implement its own trigger or algorithm.

For example, one algorithm that could be used would be to use windows of the stream of data.

For each window check if that can be the beginning of an identifiable gesture. This could mean

that the algorithm should be able to process more than one gesture comparison at a time. Some

other algorithms use the variance of the data of the window to know when a movement starts2.

Figure 47 shows an example of windowing or segmenting the data. When a window or

segmentation has a high probability of being the start of a gesture the algorithm checks the

following windows to find if it is an identifiable gesture. In case 1 the system started recognizing

the beginning of a gesture, but it is rejected as it doesn't match the consecutive windows or

segmentations. In case 2 the gesture is identified.

1 Nintendo Wii video games, EasyStorke, Sony Ericsson Gesture sensing and others
2 Benbasat, A.Y., Paradiso, J.A. An inertial measurement framework for gesture recognition and
applications. Gesture and Sign Language in Human-Computer Interaction, International Gesture
Workshop, 2001.

45

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Usually gestures are initiated with a fast movement. The values of the accelerometer will

change quickly. The peaks on the the derivative of the accelerometer data could be used as a

trigger to start detecting a movement1.

In our case the changes in the derivative of the accelerometer are used as a trigger. When the

derivative is above a threshold it is considered that the gesture has begun, if it is below a

threshold it is interpreted as the gesture is done.

This creates a problem about the range of gestures that can be identified. Some gestures will

have a different motion speed that might not trigger the start or might trigger the stop too soon.

METHOD OF RECOGNITION

There are a lot of different algorithms that have been applied to recognize gestures: Hidden

Markov Models51 52 2 , feature-based statistical classifiers3, neural networks, support vector

machines², $1 unistroke recognizer4, and others. The most commonly used is the Hidden

Markov Model (HMM). The gestures are segmented in unities that are represented as states.

The algorithm has different states and probabilities to go from one state to another. A gesture

will be recognized when it has gone through the proper states in the right order. The main

problem of the HMM is that the algorithm needs to be trained.

In this project one of the priorities of the gesture recognition is real time recognition. Also it is

important for the user to be easy to record new gestures to identify in the future, so the

application can be more personalized (custom gestures).

The algorithm applied in this project is the KNN (k-nearest neighbour). This algorithm doesn't

need a lot of computation and doesn't need any training. Given a set of attributes for a gesture,

1 Zoltan Prekopcsák (2008) Accelerometer Based Real-Time Gesture Recognition, Budapest University
of Technology and Economics
2 Anderson, D., Bailey, C. and Skubic, M. (2004) Hidden Markov Model symbol recognition for sketch-
based interfaces. AAAI Fall Symposium. Menlo Park, CA: AAAI Press, 15-21.
3 Rubine, D. (1991) Specifying gestures by example. Proc. SIGGRAPH '91. New York: ACM Press, 329-
337
4 O. Wobbrock, J., D. Wilson, A., Li, Yang (2007) Gestures without Libraries, Toolkits or Training: A $1
Recognizer for User Interface Prototypes

46

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

the distances between attributes of the incoming gesture and the recorded ones will be

calculated. The k-nearest neighbours of the incoming gesture will determine to which recorded

gesture it is assigned. For example, if in Figure 13 a 3-nn algorithm is applied the incoming

gesture will be classified as Gesture 1. If a 9-nn algorithm is applied it will be classified as

Gesture 2, as the are more samples of the Gesture 2 closer to the incoming gesture.

The KNN has its own problems, but if the samples are close to each other, certain issues are

avoided. The algorithm is not recommended if a lot of dimensionalities are used.

ATTRIBUTES

The attributes of each stream of data will be low-feature attributes. They are fast to calculate

and they give the necessary information about the signals1. This attributes are:

- Energy: the total sum of values of the signal.

1 Peeters, G., Rodet, X. (2002) Automatically selecting signal descriptors for Sound Classification

47

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

- Log-Attack Time: represents the time between the minimum and the maximum value in a

logarithmic scale.

- Temporal Centroid: is the weighted average of the instantaneous temporal envelope of the

signal. It indicates where the signal has more energy.

48

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

- Zero-Crossing Rate (ZCR): calculates how many times the signal goes from positive to

negative. As the signal from the accelerometer will never cross zero this is calculated to its

derivative.

This attributes were selected by experimentation. Gestures were recorded and stored. For each

gesture 20 samples were used. 5 different gestures were used. The signals were upsampled

and interpolated to make them similar to an audio signal. The Timbre Toolbox1 library for Matlab

extracted several different signal descriptors in a .csv file.

Once obtained all the descriptors the data is processed with Weka2. Different classification

algorithms are tested. The KNN is faster than SVM and mostly equally efficient. The attributes

more often used are the energy and the temporal centroid, as well as others.

The efficiency of the algorithm is proven again creating a .csv file with the signal attributes

directly from the program, without using the Timbre Toolbox, upsampling and Matlab. The

results are about an 80% of accuracy with Weka and the KNN classification method. The

gestures that are misclassified could be avoided with a similarity threshold and rejecting them.

The KNN algorithm is not recommend to be working with high dimensionality data. Our case has

12 streams (4 fingers with 3 axis each) and each stream has 4 attributes. Each gesture sample

has 48 dimensions. Computationally speaking 48 difference operations will have to be done to

compare the incoming signal with one sample. If there are 10 different gestures with 20 samples

each 9600 operations will have to be done for every incoming gesture.

To reduce computations a CNN Data Reduction algorithm can be applied. This algorithm takes

away the samples that are not in the conflict with other samples or areas when a 1NN is applied

(Figure 51).

1 Peeters, G., Giordano, B., Susini P. and Misdariis N., McAdams, S. (2010) The Timbre Toolbox:
Extracting audio descriptors from musical signals
2 University of Waikato, Weka 3: Data Mining Software, 2013, Retrieved 2013-05-15
<www.cs.waikato.ac.nz/ml/weka/index.html>

49

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

All the processing and calculations about interpreting the movements are implemented in the

software. The knn algorithm doesn't require high-complexity mathematics. This is an advantage

when programming, as it will be less complicated to write the code. The following section goes

through the different interfaces and software used.

50

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

4 SOFTWARE

This section will talk about the software used in the project to design a user-end interface. The

software used for testing was mentioned briefly in the section above (Matlab and Weka).

The software have to be able to create graphics, make connections with Teensy, design a GUI,

reproduce sound or MIDI messages, allow music interactivity, do fast computations for the

recognition algorithm, write and load presets.

4.1 PD-EXTENDED & PROCESSING1

Initially, the intended software integration was planned for Pd-Extended (audio engine) and

Processing (computations). Pd-Extended is a visual programming language that allows to

create audiovisual interaction and computing. Processing is a programming language based on

Java design to create visual effects and media art with simple computer programming.

The first steps had the channels of communication shown in Figure 16.

Pd-Extended interprets the MIDI data and sends the raw accelerometer data to Processing via

OSC messages. Processing is in charge of filtering the data, creating the graphic engine and

interpreting and recognizing positions and gestures. Processing can send OSC message to Pd-

Extended to create audio.

Using serial instead of MIDI gave better results in terms of the baud.

1 Reas, C., Benjamin, F., Processing, MIT Media Lab, 2013, Retrieved 2013-02-02 <www.processing.org/>

51

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The option of using this two programs was discarded as the coding started to be more complex.

The IDE of Processing is not suitable for having complex programs. It makes use of Java, which

is slower than C++. This programs were really useful at the beginning, as they are not very

complicated to program with. As final applications they didn't work, as they cannot export a final

application.

The program reached the stage of filtering and storing the data, recording and storing gestures,

showing graphically the inputs and triggering sound samples. When showing the input data with

processing the rates drastically dropped.

4.2 OPENFRAMEWORKS1

Initial attempts were made with raw C++. It was very hard to connect the teensy via serial and

there were some unsolved problems that stopped the programming at that moment (RS-232

usage of bytes). Working with Openframeworks made things clear, as there were examples of

how to do serial communications.

One of the many advantages of working with Openframeworks is that is has a similar structure

as Processing, but it works with C++. Programming with C++ also allows the program to be able

to work in different platforms if it is specified in the code and run faster. It also can deliver final

applications, so the user doesn't need to open any extra software.

As the code grew bigger, every change in the overall structure was more complex to make and

coding became slow in the last steps, as it had to fit the structure and many variables and

functions had to be recoded to fit in the structure.In this project the IDE Code::Blocks is used to

write and debug the code.

1 Lieberman, Z., Watson T., Castro, A., openFrameworks, MIT License, 2013, Retrieved 2013-04-25
<www.openframeworks.cc/>

52

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

4.3 ARDUINO1 AND TEENSY LOADER2

The microcontroller Teensy is programmed with the Arduino IDE and Teensy Loader. The

programing language is simple and fast to code.

The first Teensy will be programmed to receive the data from the computer, send a

synchronization byte to the glove and send the data received from the gloves back to the

computer. A delay controllable delay is coded to control the bandwidth.

The code from the second Teensy will code the information from the sensors and send it to the

second glove when the synchronization byte is received.

The program from the microcontroller on the second glove will encode the information from its

sensors and send it together with the information of the first glove.

Coding the Arduino is a fast process and the code is very flexible, as it isn't very long and

complex.

1 Banzi, M., Cuartielles, D., Zambetti, N., Arduino IDE, Arduino, <www.arduino.cc>
2 Coon, R., Stoffregen, P., Teensy Loader, PJRC Electronic Projects Components Available Worldwide,
<www.pjrc.com/teensy/>

53

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

5 INTERFACE

It is important to have an easy interface to interact with. The final user should be able to

understand the functions of each section of the program by only looking the icons, without

having too much confusion about what they could mean.

Once this point had been reached in the project, the options of what can be done in terms of

mapping are very open. The data is being received properly and processed. The interaction

phase begin now, by programming new interactive features of the program and giving more

functionalities to the gloves.

54

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

5.1 FUNCTIONS OF THE PROGRAM

There are several functions in this program. It is just a demonstration to show what the glove

could be capable of. The icons and buttons are relatively big because the mouse control with

the glove can be difficult to operate at first.

Figure 54. Main menu

The first option is to configure the connection. Depending on the computer the name of the

serial port device will change. The interface allows to write the name of the serial port. If the

connection is made the box will be green and if it is disconnect it will be red.

The bandwidth can be incremented or decreased with the plus and minus buttons. The rates

can be 125, 340, 780, 880, 1000 and 1500 (these numbers are approximate, as the rates are

not steady).

55

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

The buttons down below are to go back, save the configuration and load configuration presets.

Figure 55. Configuration of the serial port

The second option in the main menu shows the data of the index finger and the middle finger in

3D with a particle system. This a visualization tool, but is just an example of how particle

systems work. The camera can be rotated with the mouse to see the data from any perspective.

56

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 56. Particle system

Games is the third option. In this demonstration only one game has been implemented. The

index finger controls the acceleration of a ball (X and Y axis). The objective of the game is to

avoid the holes and reach the exit (red dot). The physical movement of the ball is based on a

board game1. There is a functionality in the upper bar to regenerate the holes, as sometimes

there isn't a way to the exit. The game can reach up to level 20.

1 Toysmith, Labyrinth Board Game, 2013, Retrieved 2013-06-10 <www.amazon.com/Toy-Smith-Labyrinth-
Board-Game/dp/B000BXM838/>

57

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 57. Labyrinth Game

The next menu has the functionality of storing and recognizing hand positions. The relation

between the fingers is represented with circles in the bottom. The order of these relations

between fingers is index-middle, middle-pinky, pinky-thumb, thumb-index, index-pinky, middle-

thumb. The red lines represent the stored position and the black the actual one.

Positions can be stored and saved as presets, so when the program starts it will load the

positions previously stored. They are stored in an external XML file. The buttons down below do

the functions of going back, saving, storing presets and loading presets.

58

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 58. Position storing and loading

The gesture recognition is implemented in the next menu. The menu is very similar to the

previous one. Instead of having circles to see the relationship between fingers, this time there is

a data input representation. The green lines represent the filtered incoming data. The red lines

are the derivative of the green lines. The rows have the order of index, middle, pinky and thumb,

and the columns represent Z, Y and X axis.

The buttons down below do the functions of recording, going back, saving, storing presets and

loading presets. The recording will be blinking when the program is set to record and it will be

red once is recording.

59

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 59. Gesture recording, storing and loading

The last menu is related to MIDI. There are four functionalities of MIDI implemented: NoteOn,

two ControlChange and PitchBend. The user can choose the axis of the finger as MIDI

message. The data will have a range between 0 and 127. The order of the fingers is index (f0),

middle (f1), pinky (f2) and thumb (f3). Audio interaction could be implemented in other programs

receiving the MIDI information from this program.

60

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 60. MIDI data selection

The upper bar indicates in all moment if there is communication between the glove and the

computer. It indicates the frame rate, the position in which the glove is now and the sampling

frequency. On the right there is a go back button, that will return to the previous menu if clicked.

The connectivity button can also be clicked. It will show the Serial Configuration menu. The

connectivity button will go red if the connection is lost.

61

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 61. Upper bar (left) Figure 62. Upper bar (right)

The main objective of this demonstration program is to create an interface easy to use and play

with. Most of the basic functionalities of the glove are implemented in this demonstration.

62

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

CONCLUSION AND RESULTS

This paper has gone through all the aspects of the construction of a prototype of glove

controller, the communication process with the computer and the information that can be

exctracted from the data from the accelerometers.

The process of sewing the connections of the glove has been the most tedious and time

inefficient. A lot of problems were driven from bad connections and had a high cost in time. Due

lack of time the connections were done with hook-up wires. Aesthetics were lost, but a lot of

time was gained to work in other parts of the project.

This project has focused a lot on the communication process. The glove could be used in

different situations because the bandwidth rate can be modified. It can reach baud levels that

none of the gloves studied before do. This is a large advantage when working with real-time

systems, as they require a fast response from the glove.

The motion of the hand can reach high frequency movements in relation of other parts of the

body. If the sampling rate was lower a lot of information would be lost. For example, the

Acceleglove works at 35 Hz and movements of the hand can reach the 30 Hz (tests were done

with this glove at 780 Hz). With the Acceleglove all this information would be lost, even if the

best software was used.

Accuracy is also a very important aspect, and as more samples better the accuracy. A noise

reduction filter has been applied in our system to obtain a smooth curve. Having a lot of

samples to process has made the signal smoother and more coherent.

In this report the coding part is not explained, but it has a lot to do with the whole project. To

receive the data a second computational thread1 has been developed, so it can work

concurrently with the rest of the program. Treating the serial connection as an event was coded

also, but the events only were executed once every frame, so only 60 Hz could be achieved

1 David R. Butenhof, Programming with POSIX Threads, Addison-Wesley

63

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

following the execution of the program. An improvement could be done, making the event ask

repeatedly for data, but that would still be gathering data every 1/60 of a second.

Designing the particle system and keeping the frame rate was not obvious. About 3000 small

pictures had to be rendered at a time. To achieve a better frame rate pointers have been used

to load and render images of the particle system.

Regarding the interface, it has been object oriented designed. The menus are objects that

contain buttons. Working with objects has made the coding much smaller and easier to develop.

The labyrinth game has been developed with object oriented programming as well as the

particle system.

This is just the beginning, as there is plenty of room for development, expansion and further

refinement. Once the connections and the data from the glove is properly received by the

computer all the interpretation and interaction can start.

64

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

APPENDIX A - Source Code

This appendix contains all relevant source code for the hardware and software portions of the

project. The source codes used in the initial phases had not been included as they were not

developed any further.

TEENSY

Computer Teensy

HardwareSerial Uart = HardwareSerial();
elapsedMillis timer;
int delayBaud;
byte serialIn;
boolean noDelay=false;

void setup() {
 Serial.begin(38400);
 Uart.begin(38400);
 pinMode(11,OUTPUT);
 delayBaud=10;
}

void loop() {

 if (Uart.available()){
 digitalWrite(11, HIGH);
 Serial.print(Uart.read(),BYTE);
 } else digitalWrite (11,LOW);

 if (timer>delayBaud&&!noDelay){
 if (Serial.available()){
 serialIn=Serial.read();

 switch (serialIn){
 case'0':
 Uart.print(serialIn,BYTE);
 break;
 case '1':
 delayBaud=delayBaud+1;
 serialIn='3';
 break;
 case '2':
 delayBaud=delayBaud-1;
 serialIn='3';

65

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if (delayBaud<7){ delayBaud=7; noDelay=true;}
 break;
 }
 }
 timer=0.01;
 } else if(noDelay){
 if (Serial.available()){
 serialIn=Serial.read();

 switch (serialIn){
 case'0':
 Uart.print(serialIn,BYTE);
 break;
 case '1':
 delayBaud=delayBaud+1;
 if (delayBaud>6){noDelay=false;}
 serialIn='3';
 break;
 case '2':
 delayBaud=delayBaud-1;
 serialIn='3';
 if (delayBaud<7){ delayBaud=7; noDelay=true;}
 break;
 }
 }
 }

}

66

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Glove Teensy

HardwareSerial Uart = HardwareSerial();

int sens;
int sensfix[12];
int fix[12];

void setup() {
 Uart.begin(38400);
}

void loop() {

 if (Uart.read()=='0'){
 for (int i=0; i<12; i++){
 if (i<11) sens=analogRead(21-i); // A11 is 22 and A0 is 21
 if (i==11) sens=analogRead(22);
 fix[i]=floor(sens/128);
 sensfix[i]=sens%128;

 // if (i%3==0) MORE EFFICIENT TO WRITE Serial.print IN HERE
 }

 sens=analogRead(A9);
 fix[9]=floor(sens/128);
 sensfix[9]=sens%128;
 sens=analogRead(A10);
 fix[10]=floor(sens/128);
 sensfix[10]=sens%128;
 sens=analogRead(A11);
 fix[11]=floor(sens/128);
 sensfix[11]=sens%128;

 for (int i=0; i<4; i++){

 if (i*8+fix[3*i]==3) fix[3*i]=7; //Avoid using 3 (Byte used by RS-232)
 if (i*8+fix[3*i]==17) fix[3*i]=6; //Avoid using 17 (XON byte of RS-232)
 if (i*8+fix[3*i]==19) fix[3*i]=7; //Avoid using 19 (XOFF byte of RS-232)
 if (i*8+fix[3*i]==26) fix[3*i]=6; //Avoid using 26 (Byte used by RS-232)
 if (i*8+fix[3*i]==28) fix[3*i]=7; //Avoid using 28 (Byte used by RS-232)

 Uart.print(0 * 64 + i*8 + fix[3*i] , BYTE); // 00 . yyy . zzz
 Uart.print(1 * 64 + fix[3*i+1]*8 + fix[3*i+2] , BYTE);
// 01 . bbb . ccc
 Uart.print(128 + sensfix[3*i] , BYTE); // 1 . jjjjjjj
 Uart.print(128 + sensfix[3*i+1], BYTE); // 1 . jjjjjjj
 Uart.print(128 + sensfix[3*i+2], BYTE); // 1 . jjjjjjj

 }
 }
}

67

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

OPENFRAMEWORKS

main.cpp

#include "ofMain.h"
#include "testApp.h"
#include "ofAppGlutWindow.h"

//==
int main(){

 ofAppGlutWindow window;
ofSetupOpenGL(&window, 1024,720, OF_WINDOW);// <-------- setup the GL context

window.setGlutDisplayString("rgba double samples>=4"); // Smooth

//window.setGlutDisplayString("rgba double depth samples>=4");
 window.setGlutDisplayString("rgba double depth alpha samples>=4");

// this kicks off the running of my app
// can be OF_WINDOW or OF_FULLSCREEN
// pass in width and height too:
ofRunApp(new testApp());

}

68

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

test.cpp

#include "testApp.h"

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include <unistd.h>

#include <X11/Xlib.h>
#include <X11/Xutil.h>

//--
void testApp::setup(){

 //Initialize variables

 width=ofGetWindowWidth();
 height=ofGetWindowHeight();

 iniGraphics();
 iniCSV();

 menu_sel=0;
 menu_prev_sel=0;
 samplingfreq_ind=0;
 samplingfreq=0;

 mPositionSel=-1;
 mGestureSel=-1;

 for (int i=0; i<4;i++){
 mMidiFingerSel[i]=-1;
 mMidiAxisSel[i]=-1;
 mMidiOnOffSel[i]=-1;
 }

 //Initialize record variables

 record_state=0;
 tSerial.gestLength=0;
 numclass=0;
 tSerial.input_gest=false;
 tSerial.input_gestLength=0;
 //__

 // Communications ___

 // Serial communication

69

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 loadSerialPort();

 /*#ifdef _WIN32
 strcpy(device, "COM4");

#endif
#ifdef linux

 strcpy(device, "/dev/ttyACM1");
#endif

*/
 // Try to connect to the serial port
 connectSerial();

 // Midi
 midiOut.listPorts();
 midiOut.openPort(0);

 // Audio
 explosion.loadSound("explosion.wav");
 explosion.setVolume(0.75f);

 // Mouse
 mouseActive=false;
 inClick=true;

}

//--
void testApp::connectSerial(){

 // Try the connection and send a sync byte.
 tSerial.lock();
 if(serial.setup(device, 38400)) {
 serialConnection=true;
 if (tSerial.isThreadRunning()==0){
 if (serial.available()<25){ serial.writeByte('0'); }
 tSerial.start(serial);
 }
 }
 else serialConnection=false;
 tSerial.unlock();

}

//--
void testApp::update(){

 if (mouseActive){
 moveMouse();

70

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if(tSerial.input_gest&&inClick){
 inClick=false;
 clickMouse();
 } else if (!tSerial.input_gest){
 inClick=true;
 }

 }

 // Serial Communication
 if (serialConnection){
 // Close the connection after 60 attempts.
 tSerial.lock();
 if (!serial.available()) {
 attempts++;
 if (attempts>10000){
 serial.flush(); serial.close(); serialConnection=false;
tSerial.stop();
 cout << "Serial Connection closed\n";
 }
 } else attempts=0;
 tSerial.unlock();
 } else{
 // Retry connection once every second
 if(prev_sec!=ofGetSeconds()){
 connectSerial();
 }
 prev_sec=ofGetSeconds();

 }

 // Update data
 tSerial.lock();
 if (serialConnection){
 // Record
 gestAnalysis();
 }
 tSerial.unlock();

 // Sampling rate
 if(prev_sec!=ofGetSeconds()){
 //tSerial.lock();
 samplingfreq=tSerial.samplingfreq_ind;
 tSerial.samplingfreq_ind=0;
 //tSerial.unlock();
 }
 prev_sec=ofGetSeconds();

 //Midi
 sendMidi();

 // Audio

71

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofSoundUpdate();

}

//--
void testApp::draw(){

 ofBackground(255, 255, 255);

 // Draws the menu selected
 switch (menu_sel){
 case 0:
 ofSetLineWidth(1);
 myMenu.draw();
 break;
 case 1:
 drawSerialConfiguration();
 break;
 case 2:
 drawParticles();
 break;
 case 3:
 drawGBouncingBalls();
 break;
 case 4:
 drawPositions();
 break;
 case 5:
 drawGesture();
 break;
 case 6:
 drawMidi();
 break;
 }

 // Connection Icon
 if (serialConnection) ofSetColor(0,255,0);
 else ofSetColor(255,0,0);
 ofFill();
 ofCircle(22,22,12);

 ofEnableAlphaBlending();
 ofSetColor(255,255,255);
 connection_icon.draw(5,5,35, 35);

 // Calibration Icon
 calibration_icon.draw(width-70, 10, 25, 25);

 // Mouse Icon
 if (mouseActive){
 mouse_icon.draw(width-110, 8, 30, 30);
 }

72

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // Back Icon
 back_icon.draw(width-40, 5, 35,35);
 ofDisableAlphaBlending();

 // Frame Rate
 ofSetColor(0,0,0);
 char temp[255];
 sprintf(temp, "%i fps", (int)ofGetFrameRate());
 verdana14.drawString(temp, 50,25);

 // Similar Position
 ofEnableAlphaBlending();
 ofSetColor(255,255,255);

 position_icon.draw(110,5,35,35);
 ofDisableAlphaBlending();
 tSerial.lock();

 // Position
 if (tSerial.rightHand.difference<1.5){

 sprintf(temp, "%i", (int)tSerial.rightHand.average_position);
 verdana14.drawString(temp, 124, 31);
 if ((int)tSerial.rightHand.average_position!=prev_pos){
 prev_pos=(int)tSerial.rightHand.average_position;
 positionTimer=0;
 }
 positionTimer++;

 // Mouse active
 if (positionTimer>50&&prev_pos==10){
 mLocation.x=ofGetMouseX();
 mLocation.y=ofGetMouseX();
 mouseActive=!mouseActive;
 positionTimer=-100;
 }
 }

 tSerial.unlock();

 // Sampling Rate
 ofSetColor(0,0,0);
 sprintf(temp, "Fs: %i", samplingfreq);
 verdana14.drawString(temp, 150, 25);

}

//--
void testApp::printByte(int inbyte){
 // Prints a byte as 0s and 1s

 int byte=inbyte;
 if(byte>=128){ cout << "1"; byte-=128;} else cout << "0";

73

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if(byte>=64){ cout << "1"; byte-=64;} else cout << "0";
 if(byte>=32){ cout << "1"; byte-=32;} else cout << "0";
 if(byte>=16){ cout << "1"; byte-=16;} else cout << "0";
 if(byte>=8){ cout << "1"; byte-=8;} else cout << "0";
 if(byte>=4){ cout << "1"; byte-=4;} else cout << "0";
 if(byte>=2){ cout << "1"; byte-=2;} else cout << "0";
 if(byte>=1){ cout << "1"; byte-=1;} else cout << "0";
 cout << "\n";
}

//--
void testApp::gestAnalysis(){
 // Deals with the recording and analysing functions

 tSerial.rightHand.moveStatus();

 // Record
 if (record_state!=0&&menu_sel==5){
 // Recording state

 if (tSerial.rightHand.record_available){
 tSerial.mGestureOpt.myButtons[0].onit=true;
 }
 // Once recorded, process the data
 else if(!
tSerial.rightHand.record_available&&tSerial.mGestureOpt.myButtons[0].onit){
 record_state=0;

 tSerial.rightHand.recordSet(tSerial.gestLength);

 tSerial.rightHand.calcAttr();

 tSerial.rightHand.storeGest(numclass-1);
 tSerial.gestLength=0;
 //tSerial.rightHand.print(numclass);

 // Change the recording button state
 tSerial.mGestureOpt.myButtons[0].c_inside.set(0,255,255);

 if (isOnIt(tSerial.mGestureOpt.myButtons[0], ofGetMouseX(),
ofGetMouseY())){
 tSerial.mGestureOpt.myButtons[0].b_sel=true;
 } else tSerial.mGestureOpt.myButtons[0].b_sel=false;
 tSerial.mGestureOpt.myButtons[0].onit=false;
 }

 }

 // Analysis of an incoming gesture
 if (record_state==0&&tSerial.rightHand.record_available) tSerial.input_gest=true;

 if (!tSerial.rightHand.record_available&&tSerial.input_gest){

74

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 tSerial.input_gest=false;
 tSerial.rightHand.recordSet(tSerial.input_gestLength);
 tSerial.rightHand.calcAttr();
 tSerial.rightHand.calcGesture();
 tSerial.input_gestLength=0;
 }

}

//--
void testApp::drawSerialConfiguration(){
 // Displays the menu of the Serial Configuration

 ofSetColor(0,0,0);
 verdana18.drawString("Serial Communication", 110,100);

 // Changes the color of the button to set the serial port
 if (serialConnection){
 selected.set(100,255,100);
 }
 else {
 selected.set(255,100,100);
 }

 ofSetColor(0,0,0);
 verdana18.drawString("Serial Port", 110,170);
 verdana18.drawString("Sampling rate", 110,200);

 // Initiates the button to set the serial port
 if (scdevice.r==0){
 button bdevice=button(width/2-150-verdana18.stringWidth(device),150 ,
 0, 0 , 8, true, strcat(device,"~"), c_black, selected,
c_black);
 button bplus=button(width-230,180 ,
 35, 35 , 8, c_black, c_cyan);
 button bminus=button(width-170,180 ,
 35, 35 , 8, c_black, c_cyan);

 scdevice=bdevice;
 plus=bplus;
 minus=bminus;
 device[strlen(device)-1]='\0';
 }

 // Draw the button to set the serial port
 ofSetLineWidth(0.10f);
 scdevice.c_inside=selected;
 scdevice.x=width-150-verdana18.stringWidth(device);
 scdevice.draw();
 plus.draw();

75

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 minus.draw();
 verdana18.drawString("+", width-220,202);
 verdana18.drawString("-", width-157,202);

 mSerialConf.draw();

}

//--
void testApp::loadSerialPort(){
 std::ifstream file;

file.open("serialport.txt");
char c[255];
int index=0;
while(!file.eof()){
 file.read(c+index, 1);
 index++;
}
c[strlen(c)]='\0';
device[0]='\0';
strcpy(device, c);
file.close();
cout << device << endl;

}

void testApp::saveSerialPort(){
 std::ofstream file;

file.open("serialport.txt");
 file << device;
 file.close();
 cout << device << endl;
}

//--
void testApp::drawGames(){
 // Displays the menu of the Games
}

//--
void testApp::drawParticles(){

 // Background
 ofSetColor(c_bgPart);
 ofFill();
 ofBeginShape();
 ofVertex(0, 50);
 ofVertex(width, 50);
 ofVertex(width,height);
 ofVertex(0,height);
 ofEndShape();

 // Change background color gradually

76

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if (c_bgPart.r>2) c_bgPart-=2;

 // Draw particle system
 if (c_bgPart.r<4){
 cam.begin();
 cam.setTarget(ofVec3f(0, -290, 290));

 mySystem.update(0, -tSerial.rightHand.ffilt[0][0].y,
tSerial.rightHand.ffilt[0][0].z);
 mySystem.draw();
 ofPushMatrix();
 ofTranslate(0,0,100);
 mySystem2.update(0, -tSerial.rightHand.ffilt[1][0].y,
tSerial.rightHand.ffilt[1][0].z);
 mySystem2.draw();
 ofPopMatrix();

 // Audio
 if(tSerial.rightHand.ffilt[0][0].x>600&&!explosion.getIsPlaying()){
 explosion.play();
 myExplosion=pSystem(0, -tSerial.rightHand.ffilt[0][0].y,
tSerial.rightHand.ffilt[0][0].z, 1000, imgExpl);
 myExplosion.setExplosion();
 }
 if (explosion.getIsPlaying()){
 myExplosion.updateExpl();
 myExplosion.draw();
 }
 cam.end();

 }

 glDisable(GL_DEPTH_TEST);

}

//--
void testApp::iniParticles(){

 // Initialize particle system

 imgPart=new ofImage();
 imgExpl=new ofImage();
 imgPart->loadImage("particle.png");
 imgExpl->loadImage("particleY.png");

 glEnable(GL_DEPTH_TEST);

 c_bgPart.set(255,255,255);
 mySystem=pSystem(0, -tSerial.rightHand.ffilt[0][0].y, tSerial.rightHand.ffilt[0]
[0].z, 500, imgPart);

77

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 mySystem2=pSystem(0, -tSerial.rightHand.ffilt[1][0].y, tSerial.rightHand.ffilt[1]
[0].z, 500, imgPart);

}

//--
void testApp::drawGBouncingBalls(){
 // Display the Bouncing Balls game
 tSerial.lock();
 gravity.x=(tSerial.rightHand.ffilt[0][0].z/1000-
(float)tSerial.rightHand.neutral_acc*0.001);
 gravity.y=(tSerial.rightHand.ffilt[0][0].y/1000-
(float)tSerial.rightHand.neutral_acc*0.001);
 tSerial.unlock();

 // Holes
 for (int i=0; i<gameBalls_level*5+1; i++){
 if (i==gameBalls_level*5) i=100;
 // Attraction
 // The if and else could be avoided with cos and sin
 if (ofDist(location.x, location.y, myHoles[i].x, myHoles[i].y)<38){
 if (location.x>myHoles[i].x){
 gravity.x+=((myHoles[i].x -location.x)+37)/(-25);
 velocity.x*=abs((myHoles[i].x -location.x))/38;
 } else {
 gravity.x+=((myHoles[i].x -location.x)-37)/(-25);
 velocity.x*=abs((myHoles[i].x -location.x))/38;
 }

 if (location.y>myHoles[i].y){
 gravity.y+=((myHoles[i].y -location.y)+37)/(-25);
 velocity.y*=abs((myHoles[i].y -location.y))/38;
 } else {
 gravity.y+=((myHoles[i].y -location.y)-37)/(-25);
 velocity.y*=abs((myHoles[i].y -location.y))/38;
 }
 }
 if (i!=100) myHoles[i].draw();

 // Reset
 if (ofDist(location.x, location.y, myHoles[i].x, myHoles[i].y)<20&&i!=100){
 c_ball.r-=2;
 c_ball.g--;
 if (c_ball.r<2){
 location.set(30,height-30);
 velocity.set(-1.5,0);
 gravity.set(0,0);
 c_ball.set(255,127,0);
 }
 }

 }

78

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // Code based on Processing examples (Bouncing Ball)

 location+=velocity;
 velocity+=gravity;

 // Bounce off edges
 if (location.x>width-20){
 velocity.x*=-0.5;
 location.x=width-21;
 } else if (location.x<20){
 velocity.x*=-0.5;
 location.x=21;
 }
 if (location.y > height-20) {
 velocity.y *=-0.5;
 location.y = height-20;
 } else if (location.y < 60){
 velocity.y*=-0.5;
 location.y= 60;
 }

 // Exit/Next Level
 if (ofDist(location.x, location.y, myHoles[100].x, myHoles[100].y)<20){
 c_ball.g--;
 if (c_ball.g<2){
 if (gameBalls_level<20) gameBalls_level++;
 iniGBouncingBalls(gameBalls_level);
 }
 }
 myHoles[100].drawExit();

 // Ball
 ofSetColor(c_ball);
 circle(location.x, location.y, 20, 8, true);
 circle(location.x, location.y, 30, 8, false);

 //Upper Limit
 ofSetColor(c_black);
 ofBeginShape();
 ofVertex(0,40);
 ofVertex(width, 40);
 ofEndShape();

 //Level icon
 ofSetColor(0,0,0);
 char temp[255];
 sprintf(temp, "Level %i", gameBalls_level);
 verdana14.drawString(temp, 300,25);

 //Restart icon
 ofEnableAlphaBlending();
 ofSetColor(255,255,255);

79

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 restart_icon.draw(380,5,30, 30);
 ofDisableAlphaBlending();

}

//--
void testApp::iniGBouncingBalls(int level){

 // Initialize variables

 c_ball.set(255,127,0);
 location.set(30,height-30);
 velocity.set(0,0);
 gravity.set(0,0);
 gameBalls_level=level;

 restart_icon.loadImage("restart.png");

 for (int i=0; i<level*5; i++){
 myHoles[i].x=rand()%(width-150)+75;
 myHoles[i].y=rand()%(height-80) + 60;
 }

 myHoles[100].x=width-25;
 myHoles[100].y=rand()%(height-80) + 60;
}

//--
void testApp::drawPositions(){
 // Display the menu of the Position

 mPositions.draw();
 mPositionOpt.draw();

 // Position Indicators
 int margin=100;
 int linewidth=floor((width-margin)/(6));

 // Position (angle between fingers)
 for (int i=0; i<6; i++){
 // Circle
 ofSetLineWidth(1);
 ofSetColor(0,0,0);
 for (int a=0; a<30; a++){
 ofLine(margin/2 + linewidth/2+i*linewidth + cos((a*12)*PI/180)*30,
 height-60 + sin((a*12)*PI/180)*30,
 margin/2 +linewidth/2+i*linewidth + cos((a*12+13)*PI/180)*30,
 height-60 + sin((a*12+13)*PI/180)*30);

 }

 // Position Indicator
 ofSetLineWidth(1);

80

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofSetColor(0,0,0);
 ofLine(margin/2 +linewidth/2+i*linewidth, height-60,
 margin/2 +linewidth/2+i*linewidth +
cos(tSerial.rightHand.position[i])*35,
 height-
60+sin(tSerial.rightHand.position[i])*35);

 if (mPositionSel>=0){
 ofSetLineWidth(2);
 ofSetColor(100,0,0);
 ofLine(margin/2 +linewidth/2+i*linewidth, height-60,
 margin/2 +linewidth/2+i*linewidth +
cos(tSerial.rightHand.static_positions[mPositionSel][i])*35,
 height-
60+sin(tSerial.rightHand.static_positions[mPositionSel][i])*35);
 ofSetLineWidth(1);
 }
 }

}

//--
void testApp::drawGesture(){

 // Display the menu to record new gestures

 mGesture.draw();

 tSerial.mGestureOpt.draw();

 // Input data
 // f1x f1y f1z f1derx f1dery f1derz
 // f2x f2y f2z f2derx f2dery f2derz
 // ...
 // a01 a12 a23 a30 a02 a13
 int margin=100;
 int linewidth=floor((width-margin)/6);

 ofSetLineWidth(0.5);

 ofSetPolyMode(OF_POLY_WINDING_ODD);
 ofSetColor(0,255,0);

 // Display data

 for (int i=0; i<4; i++){

 // Raw
 ofSetColor(125,255,125);
 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){

81

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofVertex(j+margin/2,(int)tSerial.rightHand.f[i][j].x/8+i*60+400);
 }
 ofEndShape();

 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+linewidth+margin/2,(int)tSerial.rightHand.f[i]
[j].y/8+i*60+400);
 }
 ofEndShape();

 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+2*linewidth+margin/2,(int)tSerial.rightHand.f[i]
[j].z/8+i*60+400);
 }
 ofEndShape();

 // Filtered
 ofSetColor(0,255,0);
 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+margin/2,(int)tSerial.rightHand.ffilt[i][j].x/8+i*60+400);
 }
 ofEndShape();

 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+linewidth+margin/2,(int)tSerial.rightHand.ffilt[i]
[j].y/8+i*60+400);
 }
 ofEndShape();

 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+2*linewidth+margin/2,(int)tSerial.rightHand.ffilt[i]
[j].z/8+i*60+400);
 }
 ofEndShape();

 // Derivative
 ofSetColor(255,0,0);
 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){

82

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofVertex(j+3*linewidth+margin/2,(int)tSerial.rightHand.ffiltder[i]
[j].x/8+i*60+40+400);
 }
 ofEndShape();
 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+4*linewidth+margin/2,(int)tSerial.rightHand.ffiltder[i]
[j].y/8+i*60+40+400);
 }
 ofEndShape();
 ofBeginShape();
 ofNoFill();
 for (int j=0; j<linewidth-1; j++){
 ofVertex(j+5*linewidth+margin/2,(int)tSerial.rightHand.ffiltder[i]
[j].z/8+i*60+40+400);
 }
 ofEndShape();
 }

}

//--
void testApp::drawMusic(){
}

//--
void testApp::drawMidi(){

 // Display MIDI menu

 ofColor(0,0,0);
 verdana18.drawString("MIDI", (width-50)/4-200, 100);
 ofLine((width-50)/4-200, 105, 4*(width-50)/4-30, 105);
 verdana18.drawString("NoteOn", (width-50)/4-200, 150);
 verdana18.drawString("Ch", 2*(width-50)/4-220, 150);
 verdana18.drawString("Ctrl", 2*(width-50)/4-150, 150);
 verdana18.drawString("Ch", 3*(width-50)/4-220, 150);
 verdana18.drawString("Ctrl", 3*(width-50)/4-150, 150);
 verdana18.drawString("Pitch Bend", 4*(width-50)/4-200, 150);

 // Display ControlChange buttons
 for (int i=0; i<2; i++){
 // Initialize buttons
 if (channelNum[i].r==0){
 button bdevice=button(0,150 ,
 0, 0 , 8, true, "1~", c_black, c_white, c_black);
 channelNum[i]=bdevice;
 channelCtrl[i]=bdevice;
 channelCtrl[i].text[0]=49+i;
 }

83

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofSetLineWidth(0.10f);

 // Display buttons
 if (channelNum[i].b_sel) channelNum[i].c_inside=c_cyan;
 else channelNum[i].c_inside=c_white;
 if (channelCtrl[i].b_sel) channelCtrl[i].c_inside=c_cyan;
 else channelCtrl[i].c_inside=c_white;

 channelCtrl[i].x=(2+i)*(width-50)/4-220+verdana18.stringWidth("Ch: ");
 channelNum[i].x=(2+i)*(width-50)/4-150+verdana18.stringWidth("Ctrl: ");
 channelCtrl[i].draw();
 channelNum[i].draw();
 }

 // Display input data selection buttons
 for (int i=0; i<8; i++){
 if (!midi_onoff[i].onit) midi_onoff[i].c_inside.set(255,255,255);
 midi_onoff[i].draw();
 midi_fingers[i*2].draw();
 midi_fingers[i*2+1].draw();
 if (i<4){
 midi_axis[i*3].draw();
 midi_axis[i*3+1].draw();
 midi_axis[i*3+2].draw();
 }
 }

}

//--
void testApp::sendMidi(){

 // Send Midi data
 int note, ctl, pbend;
 int max, min;
 tSerial.lock();
 max=tSerial.rightHand.neutral_acc-150;
 min=tSerial.rightHand.neutral_acc+150;
 tSerial.unlock();

 /*if (timer2!=ofGetSeconds()){
 cout << "MidiOnOff" << mMidiOnOffSel[0]%2 << ", "<< mMidiOnOffSel[1]%2 << ",
"<< mMidiOnOffSel[2]%2 << ", "<< mMidiOnOffSel[3]%2 << endl;

 cout << "MidiFingerSel" << mMidiFingerSel[0]%4 << ", "<< mMidiFingerSel[1]%4
<< ", "<< mMidiFingerSel[2]%4 << ", "<< mMidiFingerSel[3]%4 << endl;
 cout << "MidiAxisSel" << mMidiAxisSel[0]%3 << ", "<< mMidiAxisSel[1]%3 << ",
"<< mMidiAxisSel[2]%3 << ", "<< mMidiAxisSel[3]%3 << endl;
 timer2=ofGetSeconds();
 }*/

84

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // NoteOn events
 if (mMidiOnOffSel[0]%2==0){
 int finger=mMidiFingerSel[0]%4;
 switch (mMidiAxisSel[0]%3){
 case 0:
 note = ofMap(tSerial.rightHand.ffilt[finger][0].z, min, max, 0, 127);
 break;
 case 1:
 note = ofMap(tSerial.rightHand.ffilt[finger][0].y, min, max, 0, 127);
 break;
 case 2:
 note = ofMap(tSerial.rightHand.ffilt[finger][0].x, min, max, 0, 127);
 break;
 }
 if (note>127) note=126;
 if (note<0) note=1;
 midiOut.sendNoteOn(1,note,100);
 }

 // Control Change events
 for (int i=1; i<3; i++){
 if (mMidiOnOffSel[i]%2==0){
 int finger=mMidiFingerSel[i]%4;
 switch (mMidiAxisSel[i]%3){
 case 0:
 ctl = ofMap(tSerial.rightHand.ffilt[finger][0].z, min, max, 0,
127);
 break;
 case 1:
 ctl = ofMap(tSerial.rightHand.ffilt[finger][0].y, min, max, 0,
127);
 break;
 case 2:
 ctl = ofMap(tSerial.rightHand.ffilt[finger][0].x, min, max, 0,
127);
 break;
 }
 if (ctl>127) ctl=126;
 if (ctl<0) ctl=1;
 midiOut.sendControlChange(mChannelCtrl[i-1], mChannelNum[i-1], ctl);
 }
 }

 // Pitch Bend events
 if (mMidiOnOffSel[3]%2==0){
 int finger=mMidiFingerSel[3]%4;
 switch (mMidiAxisSel[3]%3){
 case 0:
 pbend = ofMap(tSerial.rightHand.ffilt[finger][0].z, min, max, 0, 127);
 break;
 case 1:

85

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 pbend = ofMap(tSerial.rightHand.ffilt[finger][0].y, min, max, 0, 127);
 break;
 case 2:
 pbend = ofMap(tSerial.rightHand.ffilt[finger][0].x, min, max, 0, 127);
 break;
 }
 if (pbend>127) pbend=126;
 if (pbend<0) pbend=1;
 midiOut.sendPitchBend(1, pbend);
 }

}

//--
void testApp::keyPressed(int key){

 if (key == OF_KEY_F1){
 mouseActive=!mouseActive;
 }

 // Change the name of the serial port device
 if (scdevice.b_sel){

 if(key == OF_KEY_DEL || key == OF_KEY_BACKSPACE){
 device[strlen(device)-1]='\0';
 }
 else if(key == OF_KEY_RETURN){
 scdevice.b_sel=false;
 connectSerial();

 }else{
 device[strlen(device)]= (char)key;
 }

 for (int i=0; i<=strlen(device); i++){
 scdevice.text[i]=device[i];
 }

 scdevice.w=verdana18.stringWidth(scdevice.text)+16;

 }

 for (int i=0; i<2; i++){

 // Change the name of the Control Channel
 if (channelCtrl[i].b_sel) {

 if(key == OF_KEY_DEL || key == OF_KEY_BACKSPACE){
 channelCtrl[i].text[strlen(channelCtrl[i].text)-1]='\0';
 }
 else if(key == OF_KEY_RETURN){
 channelCtrl[i].b_sel=false;
 switch (strlen(channelCtrl[i].text)){

86

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 case 0:
 mChannelCtrl[i]=1;
 channelCtrl[i].text[0]='1';
 channelCtrl[i].text[1]='\0';
 break;
 case 1:
 mChannelCtrl[i]=channelCtrl[i].text[0]-'0';
 break;
 case 2:
 mChannelCtrl[i]=(channelCtrl[i].text[1]-'0')
+10*(channelCtrl[i].text[0]-'0');
 if (mChannelCtrl[i]>16){
 mChannelCtrl[i]=16;
 channelCtrl[i].text[0]='1';
 channelCtrl[i].text[1]='6';
 channelCtrl[i].text[2]='\0';
 }
 break;
 default:
 mChannelCtrl[i]=16;
 channelCtrl[i].text[0]='1';
 channelCtrl[i].text[1]='6';
 channelCtrl[i].text[2]='\0';
 break;
 }

 } else{
 if (key>47&&key<58){
 channelCtrl[i].text[strlen(channelCtrl[i].text)]=(char) key;
 }
 }

 channelCtrl[i].w=verdana18.stringWidth(channelCtrl[i].text)+16;
 }

 // Change the number in the Control Value
 if (channelNum[i].b_sel) {

 if(key == OF_KEY_DEL || key == OF_KEY_BACKSPACE){
 if (strlen(channelNum[i].text)>0){
 channelNum[i].text[strlen(channelNum[i].text)-1]='\0';
 }
 }
 else if(key == OF_KEY_RETURN){
 channelNum[i].b_sel=false;
 switch (strlen(channelNum[i].text)){
 case 0:
 mChannelNum[i]=1;
 channelNum[i].text[0]='1';
 channelNum[i].text[1]='\0';
 break;
 case 1:
 mChannelNum[i]=channelNum[i].text[0]-'0';

87

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 break;
 case 2:
 mChannelNum[i]=(channelNum[i].text[1]-'0')
+10*(channelNum[i].text[0]-'0');
 break;
 case 3:
 mChannelNum[i]=(channelNum[i].text[2]-'0')
+10*(channelNum[i].text[1]-'0')+100*(channelNum[i].text[0]-'0');
 if (mChannelNum[i]>127){
 mChannelNum[i]=127;
 channelNum[i].text[0]='1';
 channelNum[i].text[1]='2';
 channelNum[i].text[2]='7';
 channelNum[i].text[3]='\0';
 }
 break;
 default:
 mChannelNum[i]=127;
 channelNum[i].text[0]='1';
 channelNum[i].text[1]='2';
 channelNum[i].text[2]='7';
 channelNum[i].text[3]='\0';
 break;
 }
 } else{
 if (key>47&&key<58){
 channelNum[i].text[strlen(channelNum[i].text)]=(char) key;
 }
 }

 channelNum[i].w=verdana18.stringWidth(channelNum[i].text)+16;
 }
 }
}

//--
void testApp::keyReleased(int key){

}

//--
void testApp::mouseMoved(int x, int y){

 int xx, yy, ww, hh;

 switch (menu_sel){
 case 0:
 // Check if the mouse is over a button
 for (int i=0; i<myMenu.numButtons; i++){
 if (isOnIt(myMenu.myButtons[i], x, y)){
 myMenu.myButtons[i].b_sel=true;
 } else myMenu.myButtons[i].b_sel=false;

88

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 }
 break;

 case 1:
 // Check if the mouse is over a button
 if (isOnIt(scdevice, x, y)){
 scdevice.onit=true;
 } else scdevice.onit=false;
 if (isOnIt(plus,x,y)){
 plus.b_sel=true;
 } else plus.b_sel=false;
 if (isOnIt(minus,x,y)){
 minus.b_sel=true;
 } else minus.b_sel=false;

 for (int i=0; i<mSerialConf.numButtons; i++){
 if (isOnIt(mSerialConf.myButtons[i], x, y)){
 mSerialConf.myButtons[i].b_sel=true;
 } else mSerialConf.myButtons[i].b_sel=false;
 }
 break;

 case 4:
 // Check if the mouse is over a button
 for (int i=0; i<mPositions.numButtons; i++){

 if (isOnIt(mPositions.myButtons[i], x, y)){
 mPositions.myButtons[i].b_sel=true;
 } else mPositions.myButtons[i].b_sel=false;

 if (i<4){
 if (isOnIt(mPositionOpt.myButtons[i], x, y)){
 mPositionOpt.myButtons[i].b_sel=true;
 } else mPositionOpt.myButtons[i].b_sel=false;
 }
 }
 break;

 case 5:
 // Check if the mouse is over a button
 for (int i=0; i<mGesture.numButtons; i++){

 if (isOnIt(mGesture.myButtons[i], x, y)){
 mGesture.myButtons[i].b_sel=true;
 } else mGesture.myButtons[i].b_sel=false;

 if (i<4){
 if (isOnIt(tSerial.mGestureOpt.myButtons[i], x, y)){
 tSerial.mGestureOpt.myButtons[i].b_sel=true;
 } else tSerial.mGestureOpt.myButtons[i].b_sel=false;
 if (record_state==1) tSerial.mGestureOpt.myButtons[0].b_sel=true;
 }

89

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 }
 break;

 case 6:
 // Check if the mouse is over a button
 for (int i=0; i<16; i++){

 if (isOnIt(midi_fingers[i], x, y)){
 midi_fingers[i].b_sel=true;
 midi_fingers[i].c_inside.set(0,255,255);
 } else {
 midi_fingers[i].b_sel=false;
 if (!midi_fingers[i].onit)
midi_fingers[i].c_inside.set(255,255,255);
 }

 if (i<12){
 if (isOnIt(midi_axis[i], x, y)){
 midi_axis[i].b_sel=true;
 midi_axis[i].c_inside.set(0,255,255);
 } else {
 midi_axis[i].b_sel=false;
 if (!midi_axis[i].onit)
midi_axis[i].c_inside.set(255,255,255);
 }

 }
 }
 break;
 }
}

//--
bool testApp::isOnIt(button inb, int x, int y){
 // Return true if the point x,y is over the button. False otherwise
 if(x<inb.x+inb.w&&x>inb.x&&y<inb.y+inb.h&&y>inb.y){
 return true;
 } else {
 return false;
 }
}

//--
void testApp::mouseDragged(int x, int y, int button){

}

//--
void testApp::mousePressed(int x, int y, int button){

 switch (menu_sel){
 case 0:
 // Set the menu clicked as selected

90

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if (myMenu.myButtons[0].b_sel&&button==0){
 menu_sel=1;
 menu_prev_sel=0;
 } else if(myMenu.myButtons[1].b_sel&&button==0){
 iniParticles();
 menu_sel=2;
 menu_prev_sel=0;
 } else if(myMenu.myButtons[2].b_sel&&button==0){
 gameBalls_level=1;
 iniGBouncingBalls(gameBalls_level);
 menu_sel=3;
 menu_prev_sel=0;
 } else if(myMenu.myButtons[3].b_sel&&button==0){
 menu_sel=4;
 menu_prev_sel=0;
 } else if(myMenu.myButtons[4].b_sel&&button==0){
 menu_sel=5;
 menu_prev_sel=0;
 } else if(myMenu.myButtons[5].b_sel&&button==0){
 menu_sel=6;
 menu_prev_sel=0;
 }
 break;

 case 1:
 // Set the text button editable
 if (scdevice.onit){ scdevice.c_inside.set(0,255,255);
scdevice.b_sel=true;}
 else scdevice.b_sel=false;

 if (plus.b_sel&&button==0){
 tSerial.stop();
 ofSleepMillis(10);
 serial.writeByte('2');
 tSerial.start();

 }
 if(minus.b_sel&&button==0){
 tSerial.stop();
 ofSleepMillis(10);
 serial.writeByte('1');
 tSerial.start();

 }

 // Option button actions
 if (mSerialConf.myButtons[0].b_sel&&button==0){
 menu_sel=0;
 menu_prev_sel=1;
 } else if (mSerialConf.myButtons[1].b_sel&&button==0){
 saveSerialPort();
 } else if (mSerialConf.myButtons[2].b_sel&&button==0){

91

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 loadSerialPort();
 }
 break;

 case 3:

 // Restart Icon: restart_icon.draw(380,5,35, 35);
 if (x<(380+25)&&x>380&&y<35&&y>10&&button==0){
 cout << "\n\n CLICKED!\n\n";
 iniGBouncingBalls(gameBalls_level);
 }
 break;

 case 4:
 // Select the position number
 for (int i=0; i<mPositions.numButtons; i++){
 mPositions.myButtons[i].onit=false;
 if (mPositions.myButtons[i].b_sel&&button==0){
 mPositionSel=i;
 }

 // Option button actions
 if (i<4) {
 if (mPositionOpt.myButtons[i].b_sel&&button==0){
 switch (i){
 case 0:
 menu_sel=0;
 menu_prev_sel=4;
 break;
 case 1:
 tSerial.rightHand.storePosition(mPositionSel,true);
 break;
 case 2:
 tSerial.rightHand.loadPositionPresets();
 break;
 case 3:
 tSerial.rightHand.printPosition(mPositionSel);
 break;
 }
 }
 }
 }
 mPositions.myButtons[mPositionSel].onit=true;
 break;

 case 5:
 // Select the gesture number
 for (int i=0; i<mGesture.numButtons; i++){
 mGesture.myButtons[i].onit=false;
 if (mGesture.myButtons[i].b_sel&&button==0){
 mGestureSel=i;
 // Changes the type of movement we are recording
 numclass=i+1;

92

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 /*classname[4]=(floor(float(numclass)/10)) + '0';
 classname[5] = numclass % 10 +'0';
 classname[6] = '\0';*/
 }
 // Option button actions
 if (i<4) {
 if (tSerial.mGestureOpt.myButtons[i].b_sel&&button==0){
 switch (i){
 case 0:
 tSerial.mGestureOpt.myButtons[i].c_inside.set(255,50,5
0);
 if (mGestureSel!=-1) record_state=1;
 break;
 case 1:
 record_state=0;
 menu_sel=0;
 menu_prev_sel=5;
 break;
 case 2:
 record_state=0;
 //tSerial.rightHand.loadPositionPresets();
 break;
 case 3:
 record_state=0;
 //tSerial.rightHand.printPosition(mGestureSel);
 break;
 }
 }
 }
 }
 mGesture.myButtons[mGestureSel].onit=true;
 break;

 case 6:
 // Select the finger
 for (int i=0; i<16; i++){
 midi_fingers[i].onit=false;
 if (midi_fingers[i].b_sel&&button==0){
 mMidiFingerSel[(int)floor(i/4)]=i;
 }
 // Select the axis
 if (i<12){
 midi_axis[i].onit=false;
 if (midi_axis[i].b_sel&&button==0){
 mMidiAxisSel[(int)floor(i/3)]=i;
 }
 }
 // Turn On/Off MIDI messages
 if (i<8){
 if (isOnIt(midi_onoff[i], x, y)&&button==0){
 midi_onoff[i].onit=true;
 mMidiOnOffSel[(int)floor(i/2)]=i;
 }

93

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 }
 // Set text button editable
 if (i<2){
 if (isOnIt(channelCtrl[i], x, y)&&button==0){
 channelCtrl[i].b_sel=true;
 }
 if (isOnIt(channelNum[i], x, y)&&button==0){
 channelNum[i].b_sel=true;
 }
 }
 }

 for (int i=0; i<4; i++){
 // Set the selected buttons
 if (mMidiFingerSel[i]>-1) midi_fingers[mMidiFingerSel[i]].onit=true;
 if (mMidiAxisSel[i]>-1) midi_axis[mMidiAxisSel[i]].onit=true;
 if (mMidiOnOffSel[i]>-1) midi_onoff[mMidiOnOffSel[i]].onit=true;

 if(mMidiOnOffSel[i]%2==0){
 midi_onoff[mMidiOnOffSel[i]].c_inside.set(100,255,100);
 midi_onoff[mMidiOnOffSel[i]+1].onit=false;
 }
 else{
 midi_onoff[mMidiOnOffSel[i]].c_inside.set(255,100,100);
 midi_onoff[mMidiOnOffSel[i]-1].onit=false;
 }
 }
 break;

 }

 // Connection Icon: connection_icon.draw(5,5,35, 35);
 if (x<35&&x>10&&y<35&&y>10&&button==0){
 menu_prev_sel=menu_sel;
 menu_sel=1;
 }
 // Back Icon: back_icon.draw(width-40, 5, 35,35);
 else if (x<width-5&&x>width-35&&y<35&&y>10&&button==0){
 int temp_msel=menu_sel;
 record_state=0;
 menu_sel=menu_prev_sel;
 menu_prev_sel=temp_msel;
 }

 // Calibration Icon: calibration_icon.draw(width-60, 5, 35,35);
 else if (x<width-40&&x>width-70&&y<35&&y>10&&button==0){
 tSerial.lock();
 tSerial.rightHand.calibrate();
 tSerial.unlock();
 }

94

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

}

//--
void testApp::mouseReleased(int x, int y, int button){

}

//--
void testApp::windowResized(int w, int h){

}

//--
void testApp::gotMessage(ofMessage msg){

}

//--
void testApp::dragEvent(ofDragInfo dragInfo){

}

//--
void testApp::iniGraphics(){
 // Initalize Graphics

 // Graphics
 ofSetWindowTitle("Glove App");
 ofSetWindowPosition(0, 0);
 ofSetFrameRate(60);
 ofEnableSmoothing();

 // Menu
 myMenu = menu (6, 0, 0, 0, 150, 150, 80, 80, true);

 // Menu Serial conf
 mSerialConf = menu (3, 1, ofGetWindowWidth()/2-120, ofGetWindowHeight()-200,
 60, 60, 20, 20, true); //ofGetWindowWidth()/2-120-
>120=(60+20)*3/2

 // Menu Positions
 mPositions = menu (10, 4, 30, 30, 100, 100, 30, 30, true);
 mPositionOpt = menu (4, 41, ofGetWindowWidth()/2-160, ofGetWindowHeight()-200,
 60, 60, 20, 20, true);

 // Menu Gesture
 mGesture = menu (10, 4, 30, 30, 100, 100, 30, 30, true);
 tSerial.mGestureOpt = menu (5, 51, width/2-200, height-100,
 60, 60, 20, 20, true);

 c_black.set(0,0,0);
 c_cyan.set(0,255,255);

95

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 c_white.set(255,255,255);

 connection_icon.loadImage("connection.png");
 back_icon.loadImage("back.png");
 position_icon.loadImage("pos.png");
 calibration_icon.loadImage("calibrate.png");
 mouse_icon.loadImage("mouse.png");

 ofTrueTypeFont::setGlobalDpi(72);

 // Initalize font
verdana18.loadFont("verdana.ttf", 18, true, true);
verdana18.setLineHeight(25.0f);
verdana18.setLetterSpacing(1.000);

verdana14.loadFont("verdana.ttf", 14, true, true);
verdana14.setLineHeight(18.0f);
verdana14.setLetterSpacing(1.037);

 // Music Midi
 ofColor stroke(0,0,0);
 ofColor c_on(100, 255, 100);
 ofColor c_off(255,100,100);
 ofColor nonselected(255,255,255); // Watch out, background might be different.
 ofColor textcolor(0,0,0);
 mChannelCtrl[0]=1;
 mChannelCtrl[1]=2;
 mChannelNum[0]=1;
 mChannelNum[0]=1;

 // Initalize buttons
 for (int i=0; i<4; i++){
 button on=button(i*(width-50)/4 + 50, 200, 0, 0, 12,
 true, "ON~", stroke, nonselected, textcolor);
 button off=button(i*(width-50)/4 + 90, 200, 0, 0, 12,
 true, "OFF~", stroke, c_off, textcolor);

 midi_onoff[i*2]=on;
 midi_onoff[i*2+1]=off;

 button bf0=button(i*(width-50)/4+60, 250, 0, 0, 12,
 true, "f0~", stroke, nonselected, textcolor);
 button bf1=button(i*(width-50)/4+90, 250, 0, 0, 12,
 true, "f1~", stroke, nonselected, textcolor);
 button bf2=button(i*(width-50)/4+60, 280, 0, 0, 12,
 true, "f2~", stroke, nonselected, textcolor);
 button bf3=button(i*(width-50)/4+90, 280, 0, 0, 12,
 true, "f3~", stroke, nonselected, textcolor);

 midi_fingers[i*4]=bf0;
 midi_fingers[i*4+1]=bf1;

96

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 midi_fingers[i*4+2]=bf2;
 midi_fingers[i*4+3]=bf3;

 button bx=button(i*(width-50)/4+50, 330, 0, 0, 12,
 true, "X~", stroke, nonselected, textcolor);
 button by=button(i*(width-50)/4+80, 330, 0, 0, 12,
 true, "Y~", stroke, nonselected, textcolor);
 button bz=button(i*(width-50)/4+112, 330, 0, 0, 12,
 true, "Z~", stroke, nonselected, textcolor);

 midi_axis[i*3]=bx;
 midi_axis[i*3+1]=by;
 midi_axis[i*3+2]=bz;

 }

}

//--
void testApp::iniCSV(){
 // Creates the .csv file. This is for weka testing only.

 std::ofstream file;
char filename[]="moves";
char extension[]=".csv";
strcat(filename,extension);
file.open(filename);
char axis[]={'a','y','z'};
for (int i=1; i<5; i++){

for (int j=0; j<3; j++){
file << "f" << i ;
file << "energy_" <<axis[j] << ", ";

}
for (int j=0; j<3; j++){

file << "f" << i ;
file << "lat_" <<axis[j]<< ", ";

}
for (int j=0; j<3; j++){

file << "f" << i ;
file << "tc_" <<axis[j]<< ", ";

}
for (int j=0; j<3; j++){

file << "f" << i ;
file << "zcr_" <<axis[j]<< ", ";

}

}
file << "class" <<std::endl;
file.close();

}

//--
void testApp::exit(){

97

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // Close connections and clear memory
 serial.close();
 midiOut.closePort();
 tSerial.stop();

 delete imgPart;
}

//--
void testApp::circle(int x, int y, float rad, float res, bool opt_fill){
 // Improved circle drawing

 if (opt_fill){ circle(x,y,rad+0.1,res,false); ofFill(); }
 else ofNoFill();

 ofBeginShape();
 for (int i=0; i<(int)(360.0/res+1); i++){

 ofVertex(x + cos((i*res)*PI/180)*rad,
 y + sin((i*res)*PI/180)*rad);
 ofVertex(x + cos((i*res+res/2)*PI/180)*rad,
 y + sin((i*res+res/2)*PI/180)*rad);

 }
 ofEndShape();

}

//--
void testApp::clickMouse(){

 Display *display = XOpenDisplay(0);

 Window root = DefaultRootWindow(display);
 XWarpPointer(display, None, root, 0,0,0,0, mLocation.x, mLocation.y);
 XFlush(display);

 Display *display2= XOpenDisplay(NULL);

 XEvent event;

 if (display2 == NULL){
 cout << "ERRROOOOOOR\n";
 }

 memset (&event, 0x00, sizeof(event));

 event.type = ButtonPress;
 event.xbutton.button=Button1; //? is an int

98

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 event.xbutton.same_screen = True;

 XQueryPointer (display2, RootWindow(display2, DefaultScreen(display2)),
&event.xbutton.root,
 &event.xbutton.window, &event.xbutton.x_root,
&event.xbutton.y_root,
 &event.xbutton.x, &event.xbutton.y, &event.xbutton.state);

 event.xbutton.subwindow = event.xbutton.window;

 while (event.xbutton.subwindow){
 event.xbutton.window = event.xbutton.subwindow;

 XQueryPointer (display2, event.xbutton.window, &event.xbutton.root,
&event.xbutton.subwindow,
 &event.xbutton.x_root, &event.xbutton.y_root, &event.xbutton.x,
 &event.xbutton.y, &event.xbutton.state);
 }

 if (XSendEvent(display2, PointerWindow, True, 0xfff, &event)==0) cout << "Error
2\n\n";

 XFlush (display2);

 ofSleepMillis(100);

 event.type = ButtonRelease;
 event.xbutton.state = 0x100;

 if (XSendEvent(display2, PointerWindow, True, 0xfff, &event)==0) cout << "Error
3\n\n";

 XFlush(display2);

 XCloseDisplay(display2);

 XFlush(display);

 XCloseDisplay(display);

}

//--
void testApp::moveMouse(){

 Display *display = XOpenDisplay(0);

99

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 Window root = DefaultRootWindow(display);

 tSerial.lock();
 mGravity.x=(tSerial.rightHand.ffilt[0][0].z/1000-
(float)tSerial.rightHand.neutral_acc*0.001);
 mGravity.y=(tSerial.rightHand.ffilt[0][0].y/1000-
(float)tSerial.rightHand.neutral_acc*0.001);
 tSerial.unlock();

 if (mGravity.x>0) mSign.x=1;
 else mSign.x=-1;
 if (mGravity.y>0) mSign.y=1;
 else mSign.y=-1;

 mLocation+=mSign*(mGravity*100)*(mGravity*100)/2;

 //mVelocity+=mGravity;

 // Bounce off edges
 if (mLocation.x>ofGetScreenWidth()){
 velocity.x=0;
 mLocation.x=ofGetScreenWidth();
 } else if (mLocation.x<5){
 velocity.x=0;
 mLocation.x=5;
 }
 if (mLocation.y > ofGetScreenHeight()) {
 velocity.y =0;
 mLocation.y = ofGetScreenHeight();
 } else if (mLocation.y < 5){
 velocity.y=0;
 mLocation.y= 5;
 }

 XWarpPointer(display, None, root, 0,0,0,0, mLocation.x, mLocation.y);
 XFlush(display);
 XCloseDisplay(display);
}

100

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

test.h

#pragma once

#include "ofMain.h"
#include "ofxMidi.h"
#include "ofEvents.h"
#include "hand.h"
#include "menu.h"
#include "holes.h"
#include "pSystem.h"
#include "threadSerial.h"
#include <fstream>
#include <string>

#define ERRORTHRES 600

class testApp : public ofBaseApp{

public:

void setup();
void update();
void draw();
void exit();

 void gestAnalysis();

void keyPressed (int key);
void keyReleased(int key);
void mouseMoved(int x, int y);
void mouseDragged(int x, int y, int button);
void mousePressed(int x, int y, int button);
void mouseReleased(int x, int y, int button);
void windowResized(int w, int h);
void dragEvent(ofDragInfo dragInfo);
void gotMessage(ofMessage msg);

 // Serial connection
ofSerial serial;
bool serialConnection;

threadSerial tSerial;
void newSerialData(std::vector < float > &serialData);

//hand rightHand;

 private:
 int count;

 void iniCSV();

101

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 void iniGraphics();

 void clickMouse();
 void moveMouse();

 void connectSerial();

 // Midi
 ofxMidiOut midiOut;
 void sendMidi();

 // Graphic functions
 void drawSerialConfiguration();

 void drawGames();
 void drawGBouncingBalls();
 void circle(int x, int y, float rad, float res, bool opt_fill);

 void drawParticles();

 void drawGesture();

 void drawMusic();
 void drawMidi();

 void drawPositions();

 bool isOnIt(button inb, int x, int y);

 void printByte(int inbyte);

 // Menu
 menu myMenu;

 // Status icons
 ofImage connection_icon;
 ofImage back_icon;
 ofImage position_icon;
 ofImage calibration_icon;
 ofImage mouse_icon;

 // Global variables
 int width, height;
 int menu_sel, menu_prev_sel;
 int samplingfreq;
 int samplingfreq_ind;
 ofColor c_black,c_cyan,c_white;

 // Audio
 ofSoundPlayer explosion;

102

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // Font
ofTrueTypeFont verdana18;
ofTrueTypeFont verdana14;

 // Serial Configuration
 button scdevice, plus, minus;
 menu mSerialConf;
 ofColor selected;
 void loadSerialPort();
 void saveSerialPort();

 // Serial device
char device[200];

// GBouncingBalls
void iniGBouncingBalls(int level);
ofPoint location;

 ofPoint velocity;
 ofPoint gravity;
 int gameBalls_level;
 ofColor c_ball;
 Holes myHoles[101];
 ofImage restart_icon;

 // Particles
 void iniParticles();
 ofColor c_bgPart;
 ofImage* imgPart;
 ofImage* imgExpl;
 pSystem mySystem;
 pSystem mySystem2;
 pSystem myExplosion;
 ofEasyCam cam;

 // MPositions
 menu mPositions;
 menu mPositionOpt;
 int mPositionSel;
 int positionTimer;
 int prev_pos;

 // MGesture
 menu mGesture;
 menu mGestureOpt;
 int mGestureSel;

 // MMidi
 button midi_onoff[8];
 button midi_fingers[16];
 button midi_axis[12];
 button channelNum[2];
 button channelCtrl[2];

103

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 int mMidiFingerSel[4];
 int mMidiAxisSel[4];
 int mMidiOnOffSel[4];
 int mChannelNum[2];
 int mChannelCtrl[2];

// Retry connection
int attempts;
int prev_sec;

// Record variables
int record_state;
//int gestLength;
char classname[7];
int numclass;
//bool input_gest;
//int input_gestLength;

 // Mouse
 ofPoint mLocation, mVelocity, mGravity, mSign;
 bool mouseActive;
 bool inClick;

int timer2;

};

104

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

threadSerial.h

#ifndef _THREADED_OBJECT
#define _THREADED_OBJECT

#include "ofMain.h"
#include "hand.h"
#include "menu.h"

// this is not a very exciting example yet
// but ofThread provides the basis for ofNetwork and other
// operations that require threading.
//
// please be careful - threading problems are notoriously hard
// to debug and working with threads can be quite difficult

class threadSerial : public ofThread{

public:

 // threaded fucntions that share data need to use lock (mutex)
 // and unlock in order to write to that data
 // otherwise it's possible to get crashes.
 //
 // also no opengl specific stuff will work in a thread...
 // threads can't create textures, or draw stuff on the screen
 // since opengl is single thread safe

//--------------------------
threadSerial(){
}

void start(){
 startThread(true,false);

}

void start(ofSerial & pserial){
 serial=&pserial;
 if (serial->available()<25) { serial->writeByte('0');}

 startThread(true, false); // blocking, verbose
 }

 void stop(){
 stopThread();
 }

105

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

//--------------------------
void threadedFunction(){

while(isThreadRunning() != 0){

if(lock()){

// · Using 5 bytes for a finger (3 streams):
 // xx (00) . yyy . zzz → x indicates type of byte, y indicates
channel, z used in third byte.
 // aa (01) . bbb . ccc → a indicates type of byte, zzz, bbb, ccc
variable to give more range to the following bytes.
 // i (1) . jjjjjjj → i indicates type of byte, j represents
data.
 // i (1) . jjjjjjj → i indicates type of byte, j represents
data.
 // i (1) . jjjjjjj → i indicates type of byte, j represents
data.

 // Alternative: read all the 5 bytes together and then process
them
 if (serial->available()<25) { serial->writeByte('0'); }

 if (serial->available()){

 // First Byte 00 . yyy . zzz
 byte=serial->readByte();

 err=-1;
 if (byte>=64) {//err 0

 // To assure that we start with the right byte
 while (byte>=64){
 byte=serial->readByte();

 err=-1;
 }
 }

 // Byte conversion because RS-232 serial communication
standard
 if (byte==7) byte=3;
 if (byte==22) byte=17;
 if (byte==23) byte=19;
 if (byte==30) byte=26;
 if (byte==31) byte=28;

 channel=0;
 if (byte>= 32){ channel=4; byte-=32;}
 if (byte>= 16){ channel+=2; byte-=16;}
 if (byte>=8){ channel+=1; byte-=8;}

106

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 fix[0]=byte;

 // Second Byte 01 . bbb . ccc
 byte=serial->readByte();
 //printByte(byte);

 if (byte< 64){ // err 1
 }
 else { byte-=64;}
 fix[1]=0;
 if (byte>= 32){ fix[1]=4; byte-=32;}
 if (byte>= 16){ fix[1]+=2; byte-=16;}
 if (byte>=8){ fix[1]+=1; byte-=8; }

 fix[2]=byte;

 // Rest of the bytes 1 . jjjjjjj

 for (int i=0; i<3; i++){
 byte=serial->readByte();
 //printByte(byte);
 if (byte<128){ // err i+2
 }
 else byte-=128;
 sensfix[i]=byte;
 }

 switch (err){
 case -1:
 if (channel < 5){
 samplingfreq_ind++;
 rightHand.f[channel][0].x=(float) (fix[0]*128
+ sensfix[0]);
 rightHand.f[channel][0].y=(float) (fix[1]*128
+ sensfix[1]);
 rightHand.f[channel][0].z=(float) (fix[2]*128
+ sensfix[2]);

 //cout << (fix[0]*128 + sensfix[0]) << ", "
<< (fix[1]*128 + sensfix[1])<< ", " <<(fix[2]*128 + sensfix[2]) <<"\n";
 } else if (channel > 4){
 //leftHand
 }
 break;
 }

 rightHand.update();

 samplingfreq_ind++;

 // gestLength

107

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 if (gestLength>300||!input_gest){
 rightHand.record_available=false;
 }
 if (mGestureOpt.myButtons[0].onit==true) gestLength++;
 if (input_gest) input_gestLength++;

 }

 if (prev_sec!=ofGetSeconds()){
 prev_ellapsed=ofGetElapsedTimeMillis();
 }
 prev_sec=ofGetSeconds();

unlock();

}
if (serial->available()<25) { serial->writeByte('0');}

}
}

void printByte(int inbyte){
 // Prints a byte as 0s and 1s

 int byte=inbyte;
 if(byte>=128){ cout << "1"; byte-=128;} else cout << "0";
 if(byte>=64){ cout << "1"; byte-=64;} else cout << "0";
 if(byte>=32){ cout << "1"; byte-=32;} else cout << "0";
 if(byte>=16){ cout << "1"; byte-=16;} else cout << "0";
 if(byte>=8){ cout << "1"; byte-=8;} else cout << "0";
 if(byte>=4){ cout << "1"; byte-=4;} else cout << "0";
 if(byte>=2){ cout << "1"; byte-=2;} else cout << "0";
 if(byte>=1){ cout << "1"; byte-=1;} else cout << "0";
 cout << "\n";
 }

 // private:

 int fix[3];
 int sensfix[3];
 int channel;
 int err;
 int byte;
 int prev_sec;
 float prev_ellapsed;

 int samplingfreq_ind;
 ofSerial *serial;
 hand rightHand;
 int gestLength;
 bool input_gest;

108

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 menu mGestureOpt;
 int input_gestLength;

};

#endif

109

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

hand.cpp

#include "hand.h"

hand::hand()
{
 // Set ofVectors to 0
 for (int i=0; i<4; i++){
 for (int j=0; j<BUFFER; j++){
 f[i][j].set(0,0,0);
 ffilt[i][j].set(0,0,0);
 fder[i][j].set(0,0,0);
 ffiltder[i][j].set(0,0,0);
 }
 }

 //Allocate vectors
 position.resize(6);
 static_positions.resize(MAX_SAMPLES);

 gest_t.resize(4);
 gestfiltder_t.resize(4);
 gest_attr.resize(4);

 diff_attr.resize(MAX_SAMPLES);

 attr.resize(MAX_SAMPLES);

 for (int i=0; i<MAX_SAMPLES; i++){
 attr[i].resize(4);
 diff_attr[i].resize(4);
 for (int j=0; j<4; j++){
 attr[i][j].resize(4);
 diff_attr[i][j].resize(4);
 }
 static_positions[i].resize(6);
 if (i<4){
 gest_t[i].resize(BUFFER);
 gestfiltder_t[i].resize(BUFFER);
 gest_attr[i].resize(4);

 }
 }

 // Initalize variables
 difference=1000;
 //snpshot=0;
 //min_diff_stps=1000000;
 average_position;

110

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 record_available=false;
 loadCalibration();

 // Load presets
 loadPositionPresets();

}

hand::~hand()
{
 //dtor
}

//--

void hand::update(){

 filterData();
 calcDer();
 calcStaticPos();

 // Move the data inside the array for new data
 for (int i=BUFFER-1; i>0; i--){

 for (int j=0; j<4; j++){
 f[j][i]=f[j][i-1];
 ffilt[j][i]=ffilt[j][i-1];
 fder[j][i]=fder[j][i-1];
 ffiltder[j][i]=ffiltder[j][i-1];
 }
 }

}

//--
void hand::filterData(){

 // Exponential moving average

 for (int j=0; j<4; j++){
 ffilt[j][0]=ffilt[j][1]*0.9+f[j][0]*0.1;
 }

}

//--
void hand::calibrate(){
 //neutral_acc=(int)((ffilt[0][0].x+ffilt[0][0].y+ffilt[0][0].z)/3);
 neutral_acc=(int)(ffilt[0][0].z);
 std::ofstream file;

111

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

file.open("calibration.txt");
 file << neutral_acc;
 file.close();

 cout << "Neutral Acceleration: " << neutral_acc << endl;
}

//--
void hand::loadCalibration(){
 std::ifstream file;

file.open("calibration.txt");
char c[255];
int index=0;
while(!file.eof()){
 file.read(c+index, 1);
 index++;
}
c[strlen(c)]='\0';
file.close();

neutral_acc=(c[0]-'0')*100+(c[1]-'0')*10+(c[2]-'0');

cout << "Neutral Acceleration: " << neutral_acc << endl;

}

//--
void hand::calcDer(){
 // Calculates the derivative of the raw data and the derivative of the filtered.

 for (int i=0; i<4; i++){
 fder[i][0]=f[i][0]-f[i][1];
 ffiltder[i][0]=(ffilt[i][0]-ffilt[i][1]);
 }

}

//--
void hand::calcAttr(){

 //Attributes
 // - Energy
 // - Log-Attack Time = log10(tampmax - tampmin);
 // - Temporal Centroid = sum(env(t)*t)/sum(env(t)
 // - Zero-Crossing Rate

 //This means that each point (gesture) has 12*4 dimensions

 // Log-Attack Time variables
 float xMax,yMax,zMax,xMin,yMin,zMin;
 int txAmpMax, tyAmpMax, tzAmpMax, txAmpMin, tyAmpMin, tzAmpMin;

112

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 //Time Centroid variables
 ofVec3f tcNum,tcDen;

 //ZCR variables
 bool xSign,ySign,zSign,xPrevSign,yPrevSign,zPrevSign;

 for (int i=0; i<4; i++){

 gest_attr[i][0].set(0,0,0);

 // Search for an easy way to define these values automatically
 xMax=-10000; yMax=-10000; zMax=-10000;
 xMin=10000; yMin=10000; zMin=10000;

 tcNum.set(0,0,0); tcDen.set(0,0,0);

 if (gestfiltder_t[i][0].x>0) xPrevSign=true;
 else xPrevSign=false;
 if (gestfiltder_t[i][0].y>0) yPrevSign=true;
 else yPrevSign=false;
 if (gestfiltder_t[i][0].z>0) zPrevSign=true;
 else zPrevSign=false;

 gest_attr[i][3].set(0,0,0);

 for (int j=0; j<gest_t_length; j++){

 // Calculate the Energy
 gest_attr[i][0].x=gest_attr[i][0].x+abs(gest_t[i][j].x);
 gest_attr[i][0].y=gest_attr[i][0].y+abs(gest_t[i][j].y);
 gest_attr[i][0].z=gest_attr[i][0].z+abs(gest_t[i][j].z);

 //Find where the max and minimum values are
 if (gest_t[i][j].x>xMax){
 xMax=gest_t[i][j].x;
 txAmpMax=j;
 }
 if (gest_t[i][j].y>yMax){
 yMax=gest_t[i][j].y;
 tyAmpMax=j;
 }
 if (gest_t[i][j].z>zMax){
 zMax=gest_t[i][j].z;
 tzAmpMax=j;
 }

 if (gest_t[i][j].x<xMin){
 xMin=gest_t[i][j].x;
 txAmpMin=j;
 }
 if (gest_t[i][j].y<yMin){

113

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 yMin=gest_t[i][j].y;
 tyAmpMin=j;
 }
 if (gest_t[i][j].z<zMin){
 zMin=gest_t[i][j].z;
 tzAmpMin=j;
 }

 // Calculate the numerator and denominator of the temporal centroid
 tcNum=tcNum+(j*gest_t[i][j]);
 tcDen=tcDen+(gest_t[i][j]);

 //Determine the sign of the point
 if (gestfiltder_t[i][j].x>0) xSign=true;
 else xSign=false;
 if (gestfiltder_t[i][j].y>0) ySign=true;
 else ySign=false;
 if (gestfiltder_t[i][j].z>0) zSign=true;
 else zSign=false;

 //Calculate the ZCR
 if(xSign!=xPrevSign) gest_attr[i][3].x++;
 if(ySign!=yPrevSign) gest_attr[i][3].y++;
 if(zSign!=zPrevSign) gest_attr[i][3].z++;

 //Define the previous sign
 xPrevSign=xSign; yPrevSign=ySign; zPrevSign=zSign;

 }

 // Calculate the Log-Attack Time
 gest_attr[i][1].set(log10(abs(txAmpMax-txAmpMin)),
 log10(abs(tyAmpMax-tyAmpMin)),
 log10(abs(tzAmpMax-tzAmpMin)));

 // Calculate the Temporal Centroid
 gest_attr[i][2]=tcNum/tcDen;

 //cout << "Energy: " << gest_attr[i][0] << " LAt: "<<gest_attr[i][1]
 // << "\nTc: " << gest_attr[i][2] << " Zcr: " << gest_attr[i][3] <<
endl;
 }

}

//--
void hand::calcStaticPos(){
 // Calculates the angles between the 4 fingers and finds a match.

114

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 /*for (int i=0; i<3; i++){
 position[i]=(ffilt[i][0]-neutral_acc).angleRad((ffilt[i+1][0]-neutral_acc));
 }
 position[3]=(ffilt[3][0]-neutral_acc).angleRad((ffilt[0][0]-neutral_acc));
 position[4]=(ffilt[0][0]-neutral_acc).angleRad((ffilt[2][0]-neutral_acc));
 position[5]=(ffilt[1][0]-neutral_acc).angleRad((ffilt[3][0]-neutral_acc));
*/
 ofVec3f values1[4];
 float length;

 for (int i=0; i<4; i++){
 values1[i]=ffilt[i][0]-neutral_acc;
 length=sqrt(values1[i].x*values1[i].x+values1[i].y*values1[i].y+values1[i].z*v
alues1[i].z);
 values1[i]=values1[i]/length;
 }
 for (int i=0; i<4; i++){
 position[i]=acos(values1[i].x*values1[(i+1)%4].x +
values1[i].y*values1[(i+1)%4].y + values1[i].z*values1[(i+1)%4].z);
 }
 position[4]=acos(values1[2].x*values1[0].x + values1[2].y*values1[0].y +
values1[2].z*values1[0].z);
 position[5]=acos(values1[1].x*values1[3].x + values1[1].y*values1[3].y +
values1[1].z*values1[3].z);

 // Comparison
 float diff=0;
 difference=1000;
 for (int i=0; i<MAX_SAMPLES; i++){
 for (int j=0; j<6; j++){
 diff+=abs(position[j]-static_positions[i][j]);
 }
 if (diff<difference) {
 difference=diff;
 similar_position=i+1;

 }
 diff=0;

 }
 // Consider changing values depending on the sampling rate
 //average_position=average_position*0.95+similar_position*0.05;
 average_position=similar_position;

}

//--
void hand::storePosition(int id, bool store){
 static_positions[id]=position;

115

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // If several snapshots are taken from the same position:

 // Function to change the positions in the program (doesn't affect the presets).
Stores several
 // snapshots of the same position. Once bool store is set to true the avg is
calculated.
 // Is it necessary to make an average?

 // There must be an order followed: id must not change if store is false. It can
change
 // once you set store to true.
 // storePosition(1, false);
 // storePosition(1, false);
 //...
 // storePosition(1, true);
 // storePosition(2, false);
 //...

 // A condition could be implemented in case that the snapshots of the same
position are very different.

/*
 if (!store){
 if (snpshot==0){
 static_positions[id]=position;
 snpshot++;
 }
 else {
 for (int i=0; i<6; i++){
 static_positions[id][i]+=position[i];
 }
 snpshot++;
 }
 } else {
 if(snpshot!=0){
 for (int i=0; i<6; i++){
 static_positions[id][i]=static_positions[id][i]/snpshot;
 }
 }
 else cout << "Err: none snapshots taken\n";

 snpshot=0;
 }*/

}

//--
void hand::printPosition(int id){
 // Prints the recorded position in a XML file.

116

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofxXmlSettings XML;
 XML.loadFile("positions.xml");
 XML.clear();

 XML.addTag("STATIC_POSITION");
 XML.pushTag("STATIC_POSITION");

 int posNum=MAX_SAMPLES;
 for (int i=0; i<posNum; i++){
 XML.addTag("ANGLE");
 XML.pushTag("ANGLE", i);
 XML.addValue("ab", static_positions[i][0]);
 XML.addValue("bc", static_positions[i][1]);
 XML.addValue("cd", static_positions[i][2]);
 XML.addValue("da", static_positions[i][3]);
 XML.addValue("ac", static_positions[i][4]);
 XML.addValue("bd", static_positions[i][5]);
 XML.popTag();
 }
 XML.popTag();

 XML.saveFile("positions.xml");
}

//--
void hand::calcGesture(){
 // Finds a match for the input gesture
 // Normalize vectors? See how much weight do they have
 for (int i=0; i<MAX_SAMPLES; i++){
 if (i<3) cout << "\n\nGesture number: "<< i<<"\n";
 for (int j=0; j<4; j++){
 if (i<3) cout << "\nFinger: "<< j << "\n";
 for (int k=0; k<4; k++){
 diff_attr[i][j][k]=attr[i][j][k].getNormalized()*100-gest_attr[j]
[k].getNormalized()*100;
 if (i<3) cout << diff_attr[i][j][k].length() << ", ";
 }

 }
 }

 //attr[move][finger][attr]
 //gest_attr[finger][attr]

}

//--
// Stores the gesture attributes in an array (attr)
void hand::storeGest(int id){
 attr[id]=gest_attr;

117

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

}

//--
void hand::print(int numclass){
 // Prints the new move attributes in a XML file. The structure should be like
this:

 // <MOVE>
 // <FINGER>
 // <ENERGY>
 // <X> x energy </X>
 // <Y> y energy </Y>
 // <Z> z energy </Z>
 // </ENERGY>
 // <LAT>
 // <X> x log-attack time </X>
 // <Y> y log-attack time </Y>
 // <Z> z log-attack time </Z>
 // </LAT>
 // [...]
 // </FINGER>
 // [...]
 // </MOVE>

 // Also saves the new move attributes in the CSV file:
 // f1energy_x, f1energy_y, f1energy_z, f1lat_x, f1_lat_y, ... , class
 // Should I create another function to save the clusters? Are the clusters raw
averages of all the samples?
 // Is knn using clusters or just cheking k-nearest neighbors?

/*
 // The CSV file contains all the move samples.
 std::ofstream CSV;
 CSV.open("moves.csv", std::ios::out | std::ios::app); //Open the CSV file and
write at the end

 // One XML per group of samples of the same move
 // One XML per all the clusters (attr)

 ofxXmlSettings XML;

 char classname[20];
 strcpy(classname, "move");
 classname[4]=(floor(float(numclass)/10)) + '0';
 classname[5] = numclass % 10 +'0';
 classname[6]='\0';

 strcat(classname, ".xml"); // Adds the extension
 classname[10]='\0';
 cout << "\n In rightHand 1: " << classname << endl;
 XML.loadFile(classname);
 cout << "Is this here?" << endl;

118

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 //classname[strlen(classname)-4]='\0'; //Removes the extension
 classname[6]='\0';
 cout << "\n In rightHand 2: " << classname << endl;
 int moveNum=XML.addTag("MOVE");
 int fingNum;
 int axisNum;

 if(XML.pushTag("MOVE", moveNum)){

 for (int f=0; f<4; f++){

 fingNum=XML.addTag("FINGER");

 if (XML.pushTag("FINGER", fingNum)){

 axisNum = XML.addTag("ENERGY");
 XML.setValue("ENERGY:X", gest_attr[f][0].x, axisNum);
 XML.setValue("ENERGY:Y", gest_attr[f][0].y, axisNum);
 XML.setValue("ENERGY:Z", gest_attr[f][0].z, axisNum);

 CSV << gest_attr[f][0].x << ", " << gest_attr[f][0].y << ", "<<
gest_attr[f][0].z << ", ";

 axisNum = XML.addTag("LAT");
 XML.setValue("LAT:X", gest_attr[f][1].x, axisNum);
 XML.setValue("LAT:Y", gest_attr[f][1].y, axisNum);
 XML.setValue("LAT:Z", gest_attr[f][1].z, axisNum);

 CSV << gest_attr[f][1].x << ", " << gest_attr[f][1].y << ", "<<
gest_attr[f][1].z << ", ";

 axisNum = XML.addTag("TC");
 XML.setValue("TC:X", gest_attr[f][2].x, axisNum);
 XML.setValue("TC:Y", gest_attr[f][2].y, axisNum);
 XML.setValue("TC:Z", gest_attr[f][2].z, axisNum);

 CSV << gest_attr[f][2].x << ", " << gest_attr[f][2].y << ", "<<
gest_attr[f][2].z << ", ";

 axisNum = XML.addTag("ZCR");
 XML.setValue("ZCR:X", gest_attr[f][3].x, axisNum);
 XML.setValue("ZCR:Y", gest_attr[f][3].y, axisNum);
 XML.setValue("ZCR:Z", gest_attr[f][3].z, axisNum);

 CSV << gest_attr[f][3].x << ", " << gest_attr[f][3].y << ", "<<
gest_attr[f][3].z << ", ";

 XML.popTag();
 }

119

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 }
 XML.popTag();
 CSV << classname << std::endl;
 CSV.close();

}

 strcat(classname, ".xml"); // Adds the extension
 cout << "\n In rightHand 3: " << classname << endl;

XML.saveFile(classname);
 classname[strlen(classname)-4]='\0'; //Removes the extension
 cout << "\n In rightHand 4: " << classname << endl;
*/
}

//--
void hand::recordSet(int ingestLength){
 // Stores the incoming stream in gest_t

 int samples_before_gest=4;
 if (ingestLength>BUFFER){
 ingestLength=BUFFER/2;
 }

 for (int i=0; i<4; i++){
 for (int j=0; j<ingestLength+samples_before_gest; j++){
 gest_t[i][j]=ffilt[i][j];
 gestfiltder_t[i][j]=ffiltder[i][j];
 }
 }

 gest_t_length=ingestLength+samples_before_gest;

/*
 if (once){
 for (int i=0; i<4; i++){
 for (int j=4; j>0; j--){
 gest_t[i].push_back(ffilt[i][j]);
 gestfiltder_t[i].push_back(ffiltder[i][j]);
 }
 }
 once=false;
 }
 for(int i=0; i<4; i++){
 gest_t[i].push_back(ffilt[i][0]);
 gestfiltder_t[i].push_back(ffiltder[i][0]);
 }
 //Remember to clear the gest_t and gestfiltder_t!

*/
}

//--
void hand::moveStatus(){

120

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 // Detects if the derivate of the filtered input is above or below a threshold

 float maxtrig=0;
 float mintrig=100;

 ofVec3f sum[4];
 ofVec3f stopc[4];

 for (int i=0; i<4; i++){

 sum[i].x=abs(ffiltder[i][0].x)+abs(ffiltder[i][1].x)+abs(ffiltder[i][2].x)
+abs(ffiltder[i][3].x);
 sum[i].y=abs(ffiltder[i][0].y)+abs(ffiltder[i][1].y)+abs(ffiltder[i][2].y)
+abs(ffiltder[i][3].y);
 sum[i].z=abs(ffiltder[i][0].z)+abs(ffiltder[i][1].z)+abs(ffiltder[i][2].z)
+abs(ffiltder[i][3].z);

 stopc[i].x=sum[i].x+abs(ffiltder[i][4].x)+abs(ffiltder[i][5].x)
+abs(ffiltder[i][6].x)+abs(ffiltder[i][7].x);
 stopc[i].y=sum[i].y+abs(ffiltder[i][4].y)+abs(ffiltder[i][5].y)
+abs(ffiltder[i][6].y)+abs(ffiltder[i][7].y);
 stopc[i].z=sum[i].z+abs(ffiltder[i][4].z)+abs(ffiltder[i][5].z)
+abs(ffiltder[i][6].z)+abs(ffiltder[i][7].z);

 if (sum[i].x>maxtrig) maxtrig=sum[i].x;
 if (sum[i].y>maxtrig) maxtrig=sum[i].y;
 if (sum[i].z>maxtrig) maxtrig=sum[i].z;

 mintrig=stopc[i].x;
 if (stopc[i].y>stopc[i].x&&stopc[i].y>stopc[i].z) mintrig=stopc[i].y;
 if (stopc[i].z>stopc[i].y&&stopc[i].z>stopc[i].x) mintrig=stopc[i].z;

 }

 if (maxtrig>50){
 record_available=true;
 } if (mintrig<2) {
 record_available=false;
 }

 //cout << "Maxtrig: " << maxtrig << " Mintrig: " << mintrig << " Record
available: " << record_available << endl;

}

//--
void hand::loadPositionPresets(){
 // Read the preset .xml for static positions

 ofxXmlSettings XMLload;

121

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 XMLload.loadFile("positions.xml");

 XMLload.pushTag("STATIC_POSITION");
 int numberOfSavedPoints = XMLload.getNumTags("ANGLE");
 for(int i = 0; i < numberOfSavedPoints; i++){
 XMLload.pushTag("ANGLE", i);

 static_positions[i][0] = XMLload.getValue("ab", 0.0);
 static_positions[i][1] = XMLload.getValue("bc", 0.0);
 static_positions[i][2] = XMLload.getValue("cd", 0.0);
 static_positions[i][3] = XMLload.getValue("da", 0.0);
 static_positions[i][4] = XMLload.getValue("ac", 0.0);
 static_positions[i][5] = XMLload.getValue("bd", 0.0);

 XMLload.popTag();
 }

 XMLload.popTag(); //pop position

}

122

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

hand.h

#ifndef HAND_H
#define HAND_H

#include "ofMain.h"
#include <vector>
#include <cmath> // Log-attack time
#include <fstream> // Write .csv
#include <string> // Change the name of the files
#include "tinyxml.h"
#include "ofxXmlSettings.h"

#define BUFFER 1000
#define MAX_SAMPLES 10

class hand
{
 public:
 hand();
 virtual ~hand();

 void update();
 void moveStatus();
 void recordSet(int ingestLength);
 void calcAttr();

 void calcGesture();
 void storeGest(int id);
 void print(int innumclass);

 void storePosition(int id, bool store);
 void printPosition(int id);
 void loadPositionPresets();

 void calibrate();

 bool once;
 bool record_available;

 // Static position variables
 // [position] [angles] This must be pre-loaded
 std::vector< std::vector <float> > static_positions;
 // [angle between vectors]
 std::vector< float > position;
 // Difference between actual position and static
 float difference;
 int similar_position;
 float average_position;
 int neutral_acc;

 // [finger][point], from newest to oldest

123

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofVec3f f[4][BUFFER];
 ofVec3f ffilt[4][BUFFER];
 ofVec3f fder[4][BUFFER];
 ofVec3f ffiltder[4][BUFFER];

 // [finger][point], from newest to oldest
 std::vector< std::vector<ofVec3f> > gest_t;
 std::vector< std::vector<ofVec3f> > gestfiltder_t;

 // [finger][attr]
 std::vector< std::vector<ofVec3f> > gest_attr;

 // [move][finger][attr] Stores all the move samples attributes
 std::vector< std::vector< std::vector<ofVec3f> > > attr;
 std::vector< std::vector< std::vector<ofVec3f> > > diff_attr;

 protected:
 private:

 void filterData();
 void calcDer();
 void calcStaticPos();

 void loadCalibration();
 void saveCalibration();

 int snpshot;
 int gest_t_length;

};

#endif // HAND_H

124

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

menu.cpp

#include "menu.h"

menu::menu(int innumButtons, int id)
{
// Basic constructor
 numButtons=innumButtons;

 char name[12];
 name[0]=(floor(float(id)/10)) + '0';
 name[1] = id % 10 +'0';
 name[2]='/';

 ofColor instroke(0,50,50);
 ofColor inside(0,255,255);

 for (int i=0; i<numButtons; i++){

 myButtons[i].w=100;
 myButtons[i].h=100;
 myButtons[i].y=(50+floor(i/4)*150);
 myButtons[i].x=(50+(i%4)*150);
 myButtons[i].r=15;
 myButtons[i].c_stroke=instroke;
 myButtons[i].c_inside=inside;

 name[3]=(floor(float(i)/10)) + '0';
 name[4] = i % 10 +'0';
 name[5]='\0';

 strcat(name, ".png");
 settings[i].loadImage(name);

 }
}

menu::menu(int innumButtons, int id, int inx, int iny, int inw, int inh, int sepw, int
seph, bool intexture)
{
 // Complex constructor

 texture=intexture;
 numButtons=innumButtons;
 x=inx; y=iny;

 char name[12];
 if (texture){
 name[0]=(floor(float(id)/10)) + '0';
 name[1] = id % 10 +'0';
 name[2]='/';

125

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 }

 int buttRows=0;

 while(floor(buttRows*(sepw+inw)/ofGetWindowWidth())<1){
 buttRows++;
 }
 buttRows--;

 ofColor instroke(0,50,50);
 ofColor inside(0,255,255);

 for (int i=0; i<numButtons; i++){

 myButtons[i].w=inw;
 myButtons[i].h=inh;
 myButtons[i].y=(y+sepw+floor(i/buttRows)*(inw+sepw));
 myButtons[i].x=(x+seph+(i%buttRows)*(inh+seph));
 myButtons[i].r=15;
 myButtons[i].c_stroke=instroke;
 myButtons[i].c_inside=inside;

 if (texture){
 name[3]=(floor(float(i)/10)) + '0';
 name[4] = i % 10 +'0';
 name[5]='\0';

 strcat(name, ".png");
 settings[i].loadImage(name);
 }

 }

}

menu::menu(){
 numButtons=0;
}

menu::~menu()
{
 //dtor
}

void menu::draw(){

 for (int i=0; i<numButtons; i++){
 myButtons[i].draw();
 if (texture){
 ofEnableAlphaBlending();
 ofSetColor(0, 255, 255, 255);

126

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 settings[i].draw(myButtons[i].x, myButtons[i].y, myButtons[i].w,
myButtons[i].h);
 ofDisableAlphaBlending();
 }
 }

}

127

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

menu.h

#ifndef MENU_H
#define MENU_H

#include "ofMain.h"
#include "button.h"

class menu
{
 public:
 menu(int innumButtons, int id);
 menu(int innumButtons, int id, int inx, int iny, int inw, int inh,
 int sepw, int seph, bool intexture);
 menu();
 virtual ~menu();

 void draw();

 int numButtons;
 button myButtons[20];

 ofImage settings[20];

 protected:
 private:

 bool texture;
 int x,y;

};

#endif // MENU_H

128

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

button.cpp

#include "button.h"

button::button(int inx, int iny, int inw, int inh, ofColor instroke, ofColor ininside)
{
 // Basic constructor
 x=inx; y=iny; w=inw; h=inh; r=15;
 b_sel=false; textin=false; onit=false;
 c_stroke=instroke; c_inside=ininside;
}

button::button(int inx, int iny, int inw, int inh, int inr,ofColor instroke, ofColor
ininside)
{
 // Button without text
 x=inx; y=iny; w=inw; h=inh; r=inr;
 b_sel=false; textin=false; onit=false;
 c_stroke=instroke; c_inside=ininside;
}

button::button(int inx, int iny, int inw, int inh, int inr,
 bool intextin, char *intext, ofColor instroke, ofColor ininside,
ofColor inctext)
{
 // Button with text
 // The char *intext must have as a last character ~

 verdana18.loadFont("verdana.ttf", 18, true, true);
verdana18.setLineHeight(25.0f);
verdana18.setLetterSpacing(1.000);

int i=0;
while (intext[i]!='~'){

 text[i]=intext[i];
 i++;

}
text[i]='\0';

 if (verdana18.stringHeight(text)+16>inw) w=verdana18.stringWidth(text)+16;
 else w=inw+16;
 if (verdana18.stringHeight(text)+16>inh) h=verdana18.stringHeight(text)+16;
 else h=inh+16;

 x=inx-8; y=iny-verdana18.stringHeight(text)-8; r=inr;

129

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 b_sel=false; textin=intextin; onit=false;
 c_stroke=instroke; c_inside=ininside; c_text=inctext;
}

button::button()
{
 // Default constructor
 x=0; y=0; w=50; h=50; r=0;
 b_sel=false; textin=false; onit=false;
 c_stroke.set(0,0,0); c_inside.set(0,0,0);

}

button::~button()
{
 //dtor
}

void button::update(){

}

void button::draw(){

 // Permanetly marked
 if (onit){
 ofSetColor(c_inside);
 ofFill();
 ofRectRounded(x,y,w,h,r);
 }

 // Text display
 if (textin){
 ofSetColor(c_inside);
 ofFill();
 if (b_sel){ ofNoFill();}
 ofRectRounded(x, y, w, h, r);
 ofSetColor(c_text);
 verdana18.drawString(text, x+8,y+verdana18.stringHeight(text)+8);
 }

 // Fading
 if (b_sel){
 ofEnableAlphaBlending();
 ofSetColor(c_inside, abs(int(ofGetElapsedTimeMillis()/10)%100-50)+30);
 ofFill();
 ofRectRounded(x, y, w, h, r);

130

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

 ofDisableAlphaBlending();
 ofSetLineWidth(2);
 }

 ofSetColor(c_stroke);
 ofNoFill();
 ofRectRounded(x, y, w, h, r);
 ofSetLineWidth(1);

}

131

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

button.h

#ifndef BUTTON_H
#define BUTTON_H

#include "ofMain.h"

class button
{
 public:
 button(int inx, int iny, int inw, int inh, ofColor instroke, ofColor
ininside);
 button(int inx, int iny, int inw, int inh, int inr, ofColor instroke, ofColor
ininside);
 button(int inx, int iny, int inw, int inh, int inr,
 bool intextin, char *intext, ofColor instroke, ofColor ininside,
ofColor inctext);

 button();
 virtual ~button();

 void update();
 void draw();

 int x,y,w,h,r;
 bool b_sel, onit, textin;
 char text[100];

 ofColor c_stroke, c_inside, c_text;
 ofTrueTypeFont verdana18;

 protected:
 private:

};

#endif // BUTTON_H

132

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

pSystem.cpp

#include "pSystem.h"

pSystem::pSystem(){

}

pSystem::pSystem(float inx, float iny, float inz, int inNumP, ofImage* inImage){
 numP=inNumP;
 myParticles.resize(numP);

 img=inImage;

 for (int i=0; i<numP; i++){
 myParticles[i]= Particle(inx, iny, inz, img);
 }
}

pSystem::~pSystem()
{
 //dtor
}

void pSystem::update(float x, float y, float z){
 // 3D Data Representation
 for (int i=0; i<numP; i++){
 myParticles[i].update();
 if (myParticles[i].isDead()){
 myParticles[i]=Particle(x,y,z,img);
 }
 }
}

void pSystem::updateExpl(){
 // Explosion
 for (int i=0; i<numP; i++){
 myParticles[i].updateExpl();
 }

}

void pSystem::draw(){
 for (int i=0; i<numP; i++){
 myParticles[i].draw();
 }
}

133

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

void pSystem::setExplosion(){
 for (int i=0; i<numP; i++){
 myParticles[i].velocity*=ofPoint(ofRandomf()*0.5+1,ofRandomf()*0.5+1,ofRandomf
()*0.5+1);
 }
}

134

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

pSystem.h

#ifndef PSYSTEM_H
#define PSYSTEM_H

#include "ofMain.h"
#include "Particle.h"

class pSystem
{
 public:
 pSystem();
 pSystem(float inx, float iny, float inz, int inNumP, ofImage* inImage);
 virtual ~pSystem();

 void update(float x, float y, float z);
 void updateExpl();
 void draw();
 void setExplosion();

 std::vector <Particle> myParticles;
 int numP;
 ofImage* img;

};

#endif // PSYSTEM_H

135

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Particle.cpp

#include "Particle.h"

Particle::Particle(){
 x=0; y=0; z=0;
 life=255;
 gravity.x=-0.1;

 int angle=rand()%1000;
 velocity.set(ofRandomf(), cos(angle), sin(angle));
}

Particle::Particle(float inx, float iny, float inz, ofImage* inImage){
 iniX=inx; iniY=iny; iniZ=inz;
 x=inx; y=iny; z=inz;
 life= rand()%200 + 55;
 gravity.x=-0.1;

 img = inImage;

 int angle=rand()%1000;
 velocity.set(ofRandomf(), cos(angle), sin(angle));
}

Particle::~Particle()
{
 //dtor
}

void Particle::update(){
 // Update motion
 life-=4;
 velocity+=gravity;

 if (y>iniY) velocity.y-=0.1;
 else velocity.y+=0.1;
 if (z>iniZ) velocity.z-=0.1;
 else velocity.z+=0.1;
 x+=velocity.x;
 y+=velocity.y;
 z+=velocity.z;
}

void Particle::updateExpl(){
 // Update explosion motion
 if (life>4) life-=4;
 velocity+=velocity*0.1;
 x+=velocity.x;
 y+=velocity.y;
 z+=velocity.z;
}

136

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

void Particle::draw(){

 ofEnableAlphaBlending();
 ofSetColor(255,255,255, rand() % life);
 int rad_text=rand() % 5 + 10;
 // Draw in the trhee axes
 ofPushMatrix();
 ofTranslate(x,y,z);
 img->draw(-rad_text/2, -rad_text/2, 0, rad_text, rad_text);
 ofRotateX(90.0f);
 img->draw(-rad_text/2, -rad_text/2, 0, rad_text, rad_text);
 ofRotateY(90.0f);
 img->draw(-rad_text/2, -rad_text/2, 0, rad_text, rad_text);
 ofPopMatrix();
 ofDisableAlphaBlending();
}

bool Particle::isDead(){
 if (life<1) return true;
 else return false;
}

137

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Particle.h

#ifndef PARTICLE_H
#define PARTICLE_H

#include "ofMain.h"

class Particle
{
 public:
 Particle();
 Particle(float inx, float iny, float inz, ofImage* inImage);
 virtual ~Particle();

 float iniX, iniY, iniZ, x, y, z;
 void update();
 void updateExpl();
 void draw();
 bool isDead();

 ofPoint gravity;
 ofPoint velocity;

 private:
 ofImage* img;
 int life;

};

#endif // PARTICLE_H

138

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

holes.cpp

#include "holes.h"

Holes::Holes(){
 x=-22; y=-22;
}

Holes::Holes(int inx, int iny)
{
 x=inx; y=iny;
}

Holes::~Holes()
{
 //dtor
}

void Holes::draw(){
 ofSetColor(0,0,0);
 circle(x, y, 22, 8, true);
}

void Holes::drawExit(){
 // Exit point
 ofSetColor(200,0,0);
 circle(x,y,12, 8, true);
 ofNoFill();
 ofRect(x-21,y-21, 42, 42);
}

void Holes::circle(int x, int y, float rad, float res, bool opt_fill){
 // Improved circle drawing

 if (opt_fill){ circle(x,y,rad+0.1,res,false); ofFill(); }
 else ofNoFill();

 ofBeginShape();
 for (int i=0; i<(int)(360.0/res+1); i++){

 ofVertex(x + cos((i*res)*PI/180)*rad,
 y + sin((i*res)*PI/180)*rad);
 ofVertex(x + cos((i*res+res/2)*PI/180)*rad,
 y + sin((i*res+res/2)*PI/180)*rad);

 }
 ofEndShape();

}

139

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

140

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

holes.h

#ifndef HOLES_H
#define HOLES_H

#include "ofMain.h"

class Holes
{
 public:
 Holes();
 Holes(int inx, int iny);
 virtual ~Holes();
 int x, y, r;
 void draw();
 void drawExit();

 protected:
 private:

 void circle(int x, int y, float rad, float res, bool opt_fill);
};

#endif // HOLES_H

141

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

APPENDIX B - List of figures

Figure 1. Digital Data Entry Glove 6

Figure 2. Power Glove 7

Figure 3. DataGlove 7

Figure 4. CyberGlove II 8

Figure 5. CyberGrasp 8

Figure 6. CyberForce 9

Figure 7. 5DT Data Glove with the wireless kit 10

Figure 8. P5 Glove 10

Figure 9. Shape Hand in different positions 11

Figure 10. Shape Hand with the arm accessory 11

Figure 11. The Peregrine 12

Figure 12. Pinchglove 12

Figure 13. Didjiglove 12

Figure 14. DGTech Vhand 13

Figure 15. X-IST Data Glove 13

Figure 16. Acceleglove 14

Figure 17. KeyGlove 15

Figure 18. Ben's Glove of Power 15

Figure 19. Clove 2 15

Figure 20. Mister Gloves 16

Figure 21. Device placement diagram 19

Figure 22. Teensy 2.0 19

Figure 23. Accelerometer 20

Figure 24. XBee S1 20

Figure 25. Xbee Explorer Regulated 20

142

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 26. Polymer Lithium Ion Battery 21

Figure 27. Static information 22

Figure 28. First Maya prototype with the 3D Paint Tool. Right hand 25

Figure 29. Maya circuit design with the paint brush. Left hand 25

Figure 30. Stainless steel thread 26

Figure 31. Plated silver thread 26

Figure 32. Parallel paths sewing technique 27

Figure 33. Crossing sewing technique 28

Figure 34. Parallel lines sewing technique 28

Figure 35. Back of the right glove 29

Figure 36. Palm of the right glove 29

Figure 37. Back of the left glove 29

Figure 38. Palm of the left glove 29

Figure 39. Glove with hook-up wires 30

Figure 40. Wireless communication diagram (1) 32

Figure 41. Wireless communication diagram (2) 33

Figure 42. Wireless communication diagram (3) 34

Figure 43. Communication process diagram 40

Figure 44. Information about orientation of each finger 43

Figure 45. Relations between accelerometers 43

Figure 46. Gravity vs Acceleration 44

Figure 47. Data segmentation/windowing algorithm 45

Figure 48. Gesture attribute points (2D) with an income gesture 47

Figure 49. Peak and valley of a signal 48

Figure 50. Temporal centroids of two signals 48

Figure 51. CNN data reduction 50

Figure 52. First communication setup 51

143

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

Figure 53. Interface structure of the program 54

Figure 54. Main menu 55

Figure 55. Configuration of the serial port 56

Figure 56. Particle system 57

Figure 57. Labyrinth Game 58

Figure 58. Position storing and loading 59

Figure 59. Gesture recording, storing and loading 60

Figure 60. MIDI data selection 61

Figure 61. Upper bar (left) 62

Figure 62. Upper bar (right) 62

144

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

APPENDIX C - Data Compact Disc

One compact disc is included in this thesis. It contains this paper in a pdf format, the interface

software and the Teensy source codes.

Arduino

The codes for the two Teensy microcontrollers used in the presentation are included.

Final App

Contains the debugged application. It is the user-end application.

mySketch

This folder contains all the source codes and the Code::Blocks project.

145

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

BIBLIOGRAPHY

● Abolfathi, Peter P., Interpreting sign language is just the beginning for the AcceleGlove

open source dataglove, Gizmag website, July 23, 2009, Retrieved 2013-06-14

<www.gizmag.com/acceleglove-open-source-dataglove/12252/>

● AnthroTronix Inc., AnthroTronix YouTube Channel, YouTube, Retrieved 2013-06-14

<www.youtube.com/user/AnthroTronix>

● Anderson, D., Bailey, C. and Skubic, M. (2004) Hidden Markov Model symbol

recognition for sketch-based interfaces. AAAI Fall Symposium. Menlo Park, CA: AAAI

Press, 15-21.

● ABC editor - "Backwards Compatible - The Power Glove". ABC website - Good Game.

Australian Broadcasting Corporation (ABC). 19 May 2008. Retrieved 2009-06-06.

<www.abc.net.au/tv/goodgame/stories/s2248843.htm>

● Banzi, M., Cuartielles, D., Zambetti, N., Arduino, 2012, Retrieved 2013-04-05

<www.arduino.cc/>

● Biotecmexico, 'P5 Glove', video, YouTube, 7th of Nov 2007, Retrieved 20013-05-08

<www.youtube.com/watch?v=hoKD-R1zlpw>

146

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● Ben Heck Show, The, Episode Power Glove for Xbox, video, Revision 3 Internet

Television March 6, 2012, Retrieved 2013-04-18

<tv.revision3.com/tbhs/kinect-glove>

● Benbasat, A.Y., Paradiso, J.A., An inertial measurement framework for gesture

recognition and applications. Gesture and Sign Language in Human-Computer

Interaction, International Gesture Workshop, 2001.

● Bruning, Lynne, eTextile Lounge, Youtube Channel, YouTube, Retrieved 2013-04-14

<www.youtube.com/user/LynneBruning>

● Buechley, L., SparkFun Electronics, LilyPad Arduino, Retrieved 2013-04-12,

<arduino.cc/en/Main/arduinoBoardLilyPad>

● Cemetech, Mitchell, C., Clove 2 (Cemetech Bluetooth Dataglove), Cemetech, July 8,

2008, Retrieved 2013-04-18

<www.cemetech.net/projects/item.php?id=16#s4>

● Chen, S., Levine, E., Mister Gloves - A Wireless USB Gesture Input System, Conrell

University, 2010, Retrieved 2013-04-18

<courses.cit.cornell.edu/ee476/FinalProjects/s2010/ssc88_egl27/>

● Coon, R., Stoffregen, P., Teensy, PJRC Electronic Projects Components Available

Worldwide, 2012 - Retrieved 2013-04-05

 <www.pjrc.com/teensy/>

147

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● CyberGlove Systems, CyberGlove II Wireless Glove, 2010, Retrieved 2013-04-05

<cyberglovesystems.com/?q=products/cyberglove-ii/overview>

● CyberGlove Systems, CyberGrasp, 2010, Retrieved 2013-04-05

<cyberglovesystems.com/products/cybergrasp/overview>

● CyberGlove Systems, CyberGrasp, 2010, Retrieved 2013-04-05

<cyberglovesystems.com/products/cybergrasp/overview>

● David R. Butenhof, Programming with POSIX Threads, Addison-Wesley Professional,

1997

● Digi International Inc, XBee, 2012, Retrieved 2013-04-05

<http://www.digi.com/xbee/>

● Digi International Inc, X-CTU Software, 2012, Retrieved 2013-04-21

<www.digi.com/support/productdetail?pid=3352&osvid=57&type=utilities>

● DubSpot, 'Ableton Live + Nintendo Power Glove: Meet Controllerist Yeuda Ben-Atar aka

Side Brain @ Dubspot', video, YouTube, Oct 23 2012, Retrieved 2013-05-08

<www.youtube.com/watch?v=J1hiacj1R2Y>

● Essential Reality, P5 Gaming Glove, 2009, Retrieved 20013-05-08

 <www.gizmag.com/go/1148/>

148

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● Fakih Hamad, O., Analog, Digital and Multimedia Telecommunications: Basic and

Classic Principles, Xlibris Corporation, 2011

● Fifth Dimension Technologies, The 5th Glove, Retrieved 2013-04-05

</www.5dt.com/hardware.html#glove>

● Hernandez-Rebollar, Jose L., Kyriakopoulos, N., Lindeman, Robert W. (2002) The

AcceleGlove: a whole-hand input device for virtual reality, George Washington

University

● Inition Co. 2001, Retrieved 2013-04-28

<inition.co.uk/3D-Technologies/productsection/43>

● Inition Co., Fakespace Labs PINCH Glove, Retrieved 2013-04-28

<inition.co.uk/3D-Technologies/fakespace-labs-pinch-gloves>

● Inition Co., Didjiglove, Retrieved 2013-04-28

<inition.co.uk/3D-Technologies/didjiglove>

● Inition Co., DGTech Vhand, Retrieved 2013-04-28

<inition.co.uk/3D-Technologies/dgtech-vhand>

● Inition Co., X-IST Data Glove, Retrieved 2013-04-28

<inition.co.uk/3D-Technologies/x-ist-data-glove>

149

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● Iron Will Innovations, The Peregrine, 2012, Retrieved 20013-05-08

<theperegrine.com>

● Kessler G.D, Hodges L.F, Walker N., Evaluation of the CyberGlove as a Whole Hand

Input Device, ACM Transactions on Computer-Human Interaction. 2(4), 1995, pp. 263-

283.

● Lieberman, Z., Watson T., Castro, A., openFrameworks, MIT License, 2013, Retrieved

2013-04-25

<www.openframeworks.cc/>

● Little Bird Electronics , Triple Axis Accelerometer Breakout - ADXL335, 2012, Retrieved

2013-04-05

<littlebirdelectronics.com/products/breakout-3-axis-analog-accelerometer-adxl335>

● MIDI Manufacturers Association Inc, MIDI Messages, Retrieved 2013-05-06

<www.midi.org/techspecs/midimessages.php>

● Minority Report, 2002. Film. Directed by Steven Spilberg. USA: Twenty Century Fox

Film

● Mattel Co., The PowerGlove, Nintendo Entertainment System, Retrieved 2013-04-01

<www.ebay.com/bhp/nintendo-power-glove>

● Measurand Inc, ShapeHand, 2009, Retrieved 20013-05-08

<www.finger-motion-capture.com/shapehand.html>

150

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● O. Wobbrock, J., D. Wilson, A., Li, Yang (2007) Gestures without Libraries, Toolkits or

Training: A $1 Recognizer for User Interface Prototypes, Columbia University

● PCVR Magazine, How to build an instrumented glove based on the Powerglove flex

sensors. PCVR 16 pp 10–14. Stoughton, WI, USA: PCVR Magazine, 1994

● Peeters, G., Rodet, X. (2002) Automatically selecting signal descriptors for Sound

Classification, Pennsylvania State University

● Peeters, G., Giordano, B., Susini P. and Misdariis N., McAdams, S. (2010) The Timbre

Toolbox: Extracting audio descriptors from musical signals, Acoustical Society of

America

● Pinouts.ru, RS-232 and other serial ports and interfaces pinouts, 2009, Retrieved 2013-

05-05

<pinouts.ru/SerialPorts>

● Puckette, M., Pd-Extended, Pure Data, Retrieved 2013-02-02

<puredata.info/downloads/pd-extended>

● Reas, C., Benjamin, F., Processing, MIT Media Lab, 2013, Retrieved 2013-02-02

<www.processing.org/>

● Rowberg, J., Keyglove, freedom in the palm of your hand, Keyglove website, Retrieved

2013-05-09

<www.keyglove.net>

151

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● Rowberg, J., Keyglove Promo #01, video, Vimeo, 2013 Retrieved 2013-04-05

<vimeo.com/59319446>

● Rubine, D. (1991) Specifying gestures by example. Proc. SIGGRAPH '91. New York:

ACM Press, 329-337

● Sparkfun, XBee 1mW Chip Antenna - Series 1 (802.15.4), 2012, Retrieved 2013-04-05,

<www.sparkfun.com/products/8664>

● Sparkfun, XBee Explorer Regulated WRL -09132, 2012, Rerieved 2013-04-05

<www.sparkfun.com/products/9132>

● Sparkfun, Polymer Lithium Ion Battery - 2000mAh PRT-08483, 2012, Rerieved 2013-04-

05

</www.sparkfun.com/products/8483>

● Sparkfun, Conductive Thread (Thin) - 50' DEV-10118, 2012 - Retrieved 2013-04-05

<www.sparkfun.com/products/10118>

● Sparkfun, Conductive Thread 117/17 2ply DEV-08544, 2012 - Retrieved 2013-04-05

<www.sparkfun.com/products/8544>

● SparkFun, Hook-up Wire, 2012 - Retrieved 2013-06-05

<https://www.sparkfun.com/products/8022>

152

Gesture Recognition and Interaction with a Glove Controller
An Approach with a Glove Based on Accelerometers

Gerard Llorach Tó

● Sturman, D.J., Zeltzer, D. (January 1994). A survey of glove-based input. IEEE

Computer Graphics and Applications

● Tham. M.T., Dealing with measurement noise (A gentle introduction to noise filtering),

School of chemical Engineering and Advanced Materials, Newcastle University

● University of Waikato, Weka 3: Data Mining Software, 2013, Retrieved 2013-05-15

<www.cs.waikato.ac.nz/ml/weka/index.html>

● Zimmerman T.G and Lanier J, Computer data entry and manipulation apparatus method,

Patent Application 5,026,930, VPL Research Inc, 1992.

● Zoltan Prekopcsák (2008), Accelerometer Based Real-Time Gesture Recognition,

Budapest University of Technology and Economics

153

