

Position Estimation with a low-cost Inertial

Measurement Unit

Gerard Llorach, Alun Evans, Javi Agenjo, Josep Blat

Interactive Technologies Group

Universitat Pompeu Fabra

Barcelona, Spain

 {gerard.llorach, alun.evans, javi.agenjo, josep.blat}@upf.edu

Abstract— In this paper the Inertial Measurement Unit (IMU)

included inside the Oculus Rift virtual reality headset is

considered for head position tracking. While the Oculus is

capable of mapping rotational movement to a virtual scene,

recovering translational movement is not possible by default. In

this study, we extract position data using a different approach for

real-time position tracking with double integration, as well as a

new method for gravity compensation for accelerometers with

different axis calibrations. The proposed tracking system is

portable, simple and does not require a controlled environment.

Keywords-component; Oculus Rift; IMU; INS

I. INTRODUCTION

The majority of existing solutions for free movement inside
a virtual reality world, such as that presented to a user by the
Oculus Rift headset [1], require the use of external devices
such as game controllers. While the headset is capable of
mapping rotational head movements into the displayed scene,
translational movement of the user is not recorded, and the user
usually remains seated. This partial immersion in a virtual
world can result in some users suffering from disorientation
and motion sickness, which occurs when movement inside the
virtual environment is not correlated with the user’s physical
movement, and is due to the sensation of motion without
actually moving [2]. Thus, there is a need to enable free
movement in the virtual environment through position tracking,
mapping the user’s physical movement to the virtual domain.

There are two main approaches to the general task of
position tracking: computer vision and inertial navigation
systems with/without external sensors. Computer vision
solutions (such as [3][4]) require a controlled environment or
previous information about the environment, whereas Inertial
Navigation Systems (INS) make use of accelerometers,
gyroscopes and other sensors to track the position via dead
reckoning. INS systems are usually integrated with other data
sources (such as GPS or human input) to correct any errors [5],
or are combined with gait analysis of the data if the motion
follows a pattern (such as pedestrian walking) [6][7]. Dead
reckoning with low-cost and small devices, such as
microelectromechanical systems (MEMS), is prone to error due
the drift caused by the inaccuracy of the measured data [8].
IMUs with high accuracy are more expensive and are too
heavy for most human-oriented applications [9].

This study focuses on creating an INS using a portable,
low-cost IMU, such as that found inside the Oculus Rift. To our

knowledge, there are no reported experiments of position
tracking that are successful with such a low-cost IMU. The end
goal of work is to remove the disorientating effects caused by
the lack of a link between physical and virtual movements.
Thus, one key prior assumption of our study is that 100%
accurate position tracking is not absolutely necessary, as
previous studies have demonstrated [10] that blindfolded
human subjects can only approximate their position after
moving in open space.

The principal contribution of this paper is the development
of a method of interaction and positional tracking with a low-
cost IMU, using gravity compensation, double integration
methods, filtering and drift correction. Early testing on a
development version of the Oculus Rift demonstrated that the
measured gravity changes depending on the orientation of the
on-board accelerometers. Our system compensates for this
variable measurement using a cloud of samples which is
spherically interpolated in real-time. We extract acceleration
using double integration methods similar to Ribeiro et al. [11]
and Slifka [12] and treat the signal with a series of filters to
remove motion artifacts and compensate for drifting. All the
data is obtained through Unity3D [13] plug-ins developed and
provided by Oculus VR, and is processed with a laptop
computer which also serves to power the Oculus unit. We
present results showing that the system correctly tracks
translational movement when the user makes short, marked
movement, yet is prone to error when dealing with slow
movements or motions with constant speed.

II. OVERVIEW

This study is based on the IMU inside the Oculus Rift
Development Kit. It is a 9-axis tracker (gyroscope,
accelerometer and magnetometer) with a 1kHz update rate and
2ms latency. The IMU, developed by Adjacent Reality, already
carries out sensor fusion [5] which makes it capable of absolute
head orientation tracking without any drift.

Figure 1. Overview of the system proposed for position tracking. Yellow

sections represent acceleration measurement, blue is integration of signal, and
red is velocity.

Fig. 1 shows an overview of our approach. Firstly we
compensate for gravity measured via the IMU. Then we apply
a series of filters to compensate for various motion artifacts.
After applying the first integration, we filter again and correct
for drifting. Finally we integrate a second time to retrieve the
final position.

III. GRAVITY COMPENSATION

The first step in our method is to isolate and remove the
gravity component. The earth’s gravity produces a constant
groundward acceleration, which needs to be subtracted
because, in a virtual world, it simulates a constant free fall of
the body. The acceleration is given to us by body coordinates.
It needs to be translated to world coordinates in order to
remove the gravity from the Y axis. The orientation of the
Oculus Rift is given by a quaternion inside Unity3D. The data
is translated from body coordinates to world coordinates using
a rotation matrix Gravity can be removed now by subtracting
the value from the Y axis. Much of the previous research on
this subject chooses to subtract a constant gravity value [14].
Early tests with an Oculus Rift development kit showed the
acceleration due to gravity varied depending on the orientation,
from 9.59 to 10.08 m/s

2
, due a lack of calibration of the

accelerometer axis of the Adjacent Reality Tracker.

A. Calibration

If the gravity component is not properly removed it creates
an offset in the body acceleration. Offsets in acceleration are
problematic as they cause a constant increase in the velocity
and a huge drift in position [15]. To calibrate the gravity a set
of points is stored and then interpolated. There are three steps
to the calibration process. The first is to measure all the
different possible orientations of the Oculus, and represent
them as a cloud of points on the surface of a sphere. The
second step is to interpolate and map this point cloud to a
regular set of points represented as a sphere mesh. This enables
the final step, which is to use the sphere as an input for the final
tracking algorithm, using GPU triangle interpolation to find
any value on the surface of the sphere suggested by [16]. We
use this approach because reading from the surface of a sphere
is simple, fast and computationally cheap, rather than
constantly interpolating between samples. A set of 820 points
containing the gravity value and correspondent orientation is
stored for further interpolation. Gravity values are obtained by
manually rotating the device, and storing a value when no other
values are detected within five degrees. As the raw signal from
the device is noisy, before measuring a value the signal is
filtered with an exponential moving average (EMA) filter with
a 0.1 coefficient. The filter can be expressed like this:

𝑦𝑛 = 𝑦𝑛−1(1 − 𝛼) + 𝑥𝑛𝛼 (2)

where 𝑦𝑛 is the filtered sample, 𝑦𝑛−1 is the previous
filtered sample, 𝑥𝑛 is the new sample and 𝛼 is the filter
coefficient. Fig. 2 shows four viewpoints of the set of points
obtained during this step.

B. Interpolation

The measured points are now interpolated onto the vertices
of a sphere of 60 horizontal lines and 30 vertical rings. The
interpolation method used is the Inverse Distance Weighting
(IDW) with 16 neighbours (n) and a power parameter (p) of 1.
Radial Basis Functions should be considered for better
interpolation results.

Now that each vertex of the sphere is assigned a value, we
can obtain a value for any orientation of the Oculus Rift unit,
by interpolating between the points of the sphere. As the values
are stored as the vertices of a regular triangular mesh,
interpolated values for any point can be obtained quickly via
the GPU. These values are the gravitational force that we
subtract from the Y axis when carrying out the steps in Sections
IV and V.

IV. SIGNAL PROCESSING

In an ideal world, the position of the unit could be obtained
directly via the double integration of the acceleration measured
via the sensor (once gravity is successfully removed).
However, low-cost accelerometers do not have the required
precision, and so to estimate the position the signal needs to be
treated. Unfortunately, for each filtering step applied, the
system will lose the ability to track a certain kind of motion.
These particular cases are explained in Section IV.C below.
Much of the related work in this field processes the signal in
the frequency domain [11][12]. However, working in the
frequency domain is problematic in this case, because the
Adjacent Reality Tracker signal rate is too low for real-time
processing – typically, real time signals which are treated in the
frequency domain have a much higher rate, such as the 44.1
kHz rate of an audio signal.

A. Integration

The proposed integration methods are the trapezoidal
integral and the Simpson’s rule method mentioned in [11][12].
Although these studies suggest better results if the integration
is performed in the frequency domain, the real-time
requirement of our situation means that this is not possible as it
would introduce delay. Our tests show that there is very little
difference between the results obtained using the two
integration methods mentioned above. However, given that the
trapezoidal method does not make use of a future sample, it is
faster than Simpson’s rule and therefore was chosen for this
work.

B. Filters

The signal is itself very jittery and contains low frequency
oscillations. Finite Impulse Response (FIR) filters are
discarded as they introduce a delay in the signal. As mentioned
above, working in the frequency domain is also not feasible
because of the sampling rate and real-time constraints. The first
filter implemented is the EMA, a low-pass filter. The
coefficient has a range from 0 to 1, both excluded. The closest
to zero it is, more delay and averaging will be introduced. The
equation for the filter (1) can be found in Section III.A above.
The high-pass filter used has the inverse response of the EMA.
The bigger the cutoff frequency of the filter is, the fastest the
signal will decay to zero.

Figure 2. Different points of view of the cloud of 820 points representing the

measured gravity according to the orientation of the Oculus. Darker points
indicate a higher gravity value.

𝑦𝑛 = 𝑦𝑛−1𝛼 + (𝑥𝑛 − 𝑥𝑛−1)𝛼 (5)

where 𝛼 =
𝑅𝐶

𝑅𝐶+Δt
 , 𝑅𝐶 =

1

2𝜋𝑓𝑐
 , Δ𝑡 is the time step and 𝑓𝑐 is

the cutoff frequency of the filter.

In this case, the adaptive high-pass filter changes its cutoff
frequency according to the magnitude of the body’s
acceleration. The formula is the same as the high-pass filter (5)
and the parameter that changes is the cutoff frequency:

𝑓𝑐 = {

1

|𝑎𝑐𝑐| 𝑝
 𝑓𝑜𝑟 |𝑎𝑐𝑐| >

1

𝑝

2 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6)

where |𝑎𝑐𝑐| is the absolute value of the filtered acceleration
and 𝑝 is the adaptive high-pass filter factor.

C. Signal Processing Workflow

Our first filtering step is to use the EMA to smooth the
signal. Choosing the right coefficient is crucial, as it will affect
all the rest of the process. This filter, used with the right
coefficient, does not adversely affect the position tracking.
Slifka [12] suggests a series of high-pass filters for
acceleration, velocity and position. These filters are proposed
to remove any unknown initial conditions in the signal. We
tested each of these filters and chose only to use the
acceleration filter and a variation of the velocity filter. Using a
high-pass filter for the position is discarded as it would make
the signal decay to zero. This first high-pass filter is used to
remove a possible offset that may be present in the acceleration
signal due to gravity compensation or residual averaged
acceleration. The result of this step is that motions with small
accelerations will be not considered, and motions with a
smooth start and a sharp end will produce velocity in the
opposite direction (Fig. 3).

Figure 3. Effect of the high-pass filter on the acceleration and velocity. The
graph on the left shows the acceleration and the graph on the right its integral.

A negative constant velocity is generated.

Occasionally, a small offset remains in the velocity, causing
constant movement. This problem is resolved through the
adaptive high-pass filter applied to the velocity. This filter
helps to remove some of the offsets created by bad
measurements or the previous filters. A clear example would be
when the device is tapped or hit by something: the previous
filters won’t cancel this high and fast acceleration changes and
will produce undesirable velocity offsets. The drawback of this
filter is that motions that have a constant velocity will not be
properly estimated (Fig. 4).

Figure 4. Effect of the adaptive high-pass filter on the velocity. The graph

on the left shows the acceleration and the graph on the right its integral.

V. DRIFTING

Previous research has presented several interesting methods
for correction of drifting, such as using a high-order
polynomial function to approximate the displacement drift
[15]. Unfortunately this is all done in post-processing and is not
suitable for our real-time application. The majority of the
drifting is caused by orientation changes as there is an
acceleration component thus the adaptive high-pass filter does
not stop velocity offsets. Static situations and movements that
do not imply an orientation change do not cause too much
drifting and are easy to estimate within this system. Setting the
optimum variables for the system involves an inherent
compromise. The drifting caused by fast, continuous, changes
in orientation can be large and needs to be corrected. The
adaptive high-pass filter solves this problem, but if the
orientation changes during too long a time period, then the
offset is too big to be cancelled and the position cannot be
estimated properly (Fig. 5).

Figure 5. Recorded signal when orientation changes fast. The first plot

represents the acceleration, the second the velocity and the third the position

from the same axis. The plot shows how each step affects the signal.

In our system we decided to decay the velocity to zero
when the acceleration is lower than a threshold. The formula
(7) of the threshold function is:

𝑣 = 𝑣 · 𝑓 (7)

𝑓 = { 𝑟𝑡−|𝑎𝑐𝑐| 𝑓𝑜𝑟 |𝑎𝑐𝑐| < 𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8)

where 𝑣 is the velocity, 𝑓 is the stop factor, 𝑟 is the range of
the factor, 𝑡 is the threshold and |𝑎𝑐𝑐| is the magnitude of the
filtered acceleration. The range of the factor can have values
from 0 to 1, both excluded. If the acceleration generated is
smaller than the threshold, the velocity will decay rapidly to

zero. It has a similar effect as the adaptive high-pass filter (Fig.
6).

VI. RESULTS

The initial results concerning the position tracking are
better than expected, considering the constraints of real-time
processing and a low-cost IMU. The user is able to move
around the virtual environment, with some restrictions. When
the user takes separate, marked steps, the system works as
planned and the position is tracked. Drifting caused by
orientation changes is eliminated effectively, and only a small
amount of displacement can be noticed when the user finishes
the movement. However, long movements where velocity is
constant do not work very well, as the system counts it as a
drifting movement and compensates for it. Likewise, slow
movements that generate little acceleration are not properly
tracked as they are considered an offset of the measurement.
The system is computationally light and does not cause delays
or latencies while being used in a 3D scene.

Figure 6. Properly tracked motion. The result of the system (cyan) avoids
drifting and gets the more approximate result. The values chosen for the filters

in this case are 0.2 coefficient for the EMA, 0.1 Hz for the high-pass filter, 50

for the adaptive high-pass filter factor, 0.4 for the range and 0.4 for the
threshold of the drift correction.

VII. CONCLUSIONS AND FUTURE WORK

The main goal of this study is to allow the user to move in
the virtual environment. While the implemented system does
not track the exact user’s position, and does not allow a
perfectly natural interaction in the virtual world, it does allow
step by step movement inside a virtual environment using only
an Oculus Rift and connected laptop. No power cable is
required as the Oculus can be powered via USB connection to
the laptop.

The Oculus unit needs to undergo a calibration step prior to
be using with our developed system. One of our future tasks is
to determine whether the differing gravity values (which
necessitate the calibration) are unique to each individual unit,
or whether calibration carried out for one Oculus unit is also
valid for another. Furthermore, in this study the Allan variance
[17] is not tested, meaning that changes in temperature may
affect the recorded values from the sensor, and thus gravity is
not properly subtracted. Other IMUs could be used, but some

steps should be added, like sensor fusion, and others should be
removed, like gravity compensation if the accelerometer is
properly calibrated.

The next step for this project is testing the system to
measure user reactions, to test whether the sensation of motion
sickness is eliminated.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish
Ministry of Science and Innovation (TIN2011-28308-C03-03),
and the IMPART FP7 European Research project
(http://impart.upf.edu)

REFERENCES

[1] Oculus VR, Oculus Rift Development Kit, Retrieved December 2013,
“http://www.oculusvr.com”

[2] JT Reason, JJ Brand, “Motion Sickness,” Academic Press, January
1975.

[3] Lin Chai, William A. Hoff and Tyrone Vincent, “3D Motion and
structure estimation using inertial sensors and computer vision for
Augmented Reality,” Presence vol. 11 pp. 474–492, 2000.

[4] Hanna Nyqvist and Fredrik Gustafsson, “A high–performance tracking
system based on a camera and IMU,” 16th International Conference on
Information Fusion, Turkey, July 2013.

[5] S. Sukkarieh, E.M. Nebot and H.F. Durrant-Whyte, “A high integrity
IMU/GPS navigation loop for autonomous land vehicle applications,”
Robotics and Automation, IEEE Transactions vol.15 I. 3, Jun 1999.

[6] Oliver J. Woodman, “Pedestrian localisation for indoor environments,”
University of Cambridge, September 2010.

[7] E. Foxlin, “Pedestrian tracking with shoe-mounted inertial sensors,”
Computer Graphics and Applications, IEEE vol. 25 I. 6 Nov.-Dec. 2005

[8] D. Vissière, A. Martin and N. Petit, “Using distributed magnetometers to
increase IMU-based velocity estimation into perturbed area,” 46th IEEE
Conference on Decision and Control, USA, December 2007.

[9] Paul D. Groves, Principles of GNSS, Inertial, and multisensor integrated
navigation systems, Artech House, 2013

[10] I. Israel, N. Chapuis, S.Glasauer, O. Charade, and A. Berthoz,
“Estimation of passive horizontal linear whole-body displacements in
humans,” AJP-JN Physiol vol. 70 no. 3 pp. 1270-1273, September 1993.

[11] J.G.T. Ribeiro, J.T.P. Castro and J.L.F. Freire, “New improvements in
the digital double integration filtering method to measure displacements
using accelerometers,” 19th International Modal Analysis Conference,
IMAC XIX 2001.

[12] Lance D. Slifka, “An accelerometer based approach to measuring
displacements of a vehicle body,” Horace Rackham School Of Graduate
Studies of the University of Michigan, 2004.

[13] Unity Technologies, Unity3D, Retrieved December 2013,
“http://unity3d.com”

[14] S. Reuveny and M. Zadik, “3D motion tracking with gyroscope and
accelerometer,” The Rachel and Selim Benin School of Computer
Science and Engineering, Hebrew University of Jerusalem, Israel.

[15] M. Arraigada and M. Partl, “Calculation of displacements of measured
accelerations, analysis of two accelerometers and applications in road
engineering,” 6th Swiss Transport Research Conference, Switzerland,
March 2006.

[16] F. Ye, X. Shi, S. Wang, Y. Liu, S. Y. Han, “Spherical interpolation over
graphic processing units,” Proceedings of the ACM SIGSPATIAL
Second International Workshop on High Performance and Distributed
Geographic Information Systems, pp. 38-41, USA, 2011

[17] V. Choudhary and K. Iniewski, MEMS: Fundamental Technology and
Applications, CRC Press, 2013, pp. 86, pp.403.

