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Abstract— In this paper the Inertial Measurement Unit (IMU) 

included inside the Oculus Rift virtual reality headset is 

considered for head position tracking. While the Oculus is 

capable of mapping rotational movement to a virtual scene, 

recovering translational movement is not possible by default. In 

this study, we extract position data using a different approach for 

real-time position tracking with double integration, as well as a 

new method for gravity compensation for accelerometers with 

different axis calibrations. The proposed tracking system is 

portable, simple and does not require a controlled environment. 
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I.  INTRODUCTION  

The majority of existing solutions for free movement inside 
a virtual reality world, such as that presented to a user by the 
Oculus Rift headset [1], require the use of external devices 
such as game controllers. While the headset is capable of 
mapping rotational head movements into the displayed scene, 
translational movement of the user is not recorded, and the user 
usually remains seated. This partial immersion  in a virtual 
world can result in some users suffering from disorientation 
and motion sickness, which occurs when movement inside the 
virtual environment is not correlated with the user’s physical 
movement, and is due to the sensation of motion without 
actually moving [2]. Thus, there is a need to enable free 
movement in the virtual environment through position tracking, 
mapping the user’s physical movement to the virtual domain. 

There are two main approaches to the general task of 
position tracking: computer vision and inertial navigation 
systems with/without external sensors. Computer vision 
solutions (such as [3][4]) require a controlled environment or 
previous information about the environment, whereas Inertial 
Navigation Systems (INS) make use of accelerometers, 
gyroscopes and other sensors to track the position via dead 
reckoning. INS systems are usually integrated with other data 
sources (such as GPS or human input) to correct any errors [5], 
or are combined with gait analysis of the data if the motion 
follows a pattern (such as pedestrian walking) [6][7]. Dead 
reckoning with low-cost and small devices, such as 
microelectromechanical systems (MEMS), is prone to error due 
the drift caused by the inaccuracy of the measured data [8]. 
IMUs with high accuracy are more expensive and are too 
heavy for most human-oriented applications [9]. 

This study focuses on creating an INS using a portable, 
low-cost IMU, such as that found inside the Oculus Rift. To our 

knowledge, there are no reported experiments of position 
tracking that are successful with such a low-cost IMU. The end 
goal of work is to remove the disorientating effects caused by 
the lack of a link between physical and virtual movements. 
Thus, one key prior assumption of our study is that 100% 
accurate position tracking is not absolutely necessary, as 
previous studies have demonstrated [10] that blindfolded 
human subjects can only approximate their position after 
moving in open space. 

The principal contribution of this paper is the development 
of a method of interaction and positional tracking with a low-
cost IMU, using gravity compensation, double integration 
methods, filtering and drift correction. Early testing on a 
development version of the Oculus Rift demonstrated that the 
measured gravity changes depending on the orientation of the 
on-board accelerometers. Our system compensates for this 
variable measurement using a cloud of samples which is 
spherically interpolated in real-time. We extract acceleration 
using double integration methods similar to Ribeiro et al. [11] 
and Slifka [12] and treat the signal with a series of filters to 
remove motion artifacts and compensate for drifting. All the 
data is obtained through Unity3D [13] plug-ins developed and 
provided by Oculus VR, and is processed with a laptop 
computer which also serves to power the Oculus unit. We 
present results showing that the system correctly tracks 
translational movement when the user makes short, marked 
movement, yet is prone to error when dealing with slow 
movements or motions with constant speed. 

II. OVERVIEW 

This study is based on the IMU inside the Oculus Rift 
Development Kit. It is a 9-axis tracker (gyroscope, 
accelerometer and magnetometer) with a 1kHz update rate and 
2ms latency. The IMU, developed by Adjacent Reality, already 
carries out sensor fusion [5] which makes it capable of absolute 
head orientation tracking without any drift. 

 

 

 

 

Figure 1.  Overview of the system proposed for position tracking. Yellow 

sections represent acceleration measurement, blue is integration of signal, and 
red is velocity. 



 

Fig. 1 shows an overview of our approach. Firstly we 
compensate for gravity measured via the IMU. Then we apply 
a series of filters to compensate for various motion artifacts. 
After applying the first integration, we filter again and correct 
for drifting. Finally we integrate a second time to retrieve the 
final position. 

III. GRAVITY COMPENSATION 

The first step in our method is to isolate and remove the 
gravity component. The earth’s gravity produces a constant 
groundward acceleration, which needs to be subtracted 
because, in a virtual world, it simulates a constant free fall of 
the body. The acceleration is given to us by body coordinates. 
It needs to be translated to world coordinates in order to 
remove the gravity from the Y axis. The orientation of the 
Oculus Rift is given by a quaternion inside Unity3D. The data 
is translated from body coordinates to world coordinates using 
a rotation matrix Gravity can be removed now by subtracting 
the value from the Y axis. Much of the previous research on 
this subject chooses to subtract a constant gravity value [14]. 
Early tests with an Oculus Rift development kit showed the 
acceleration due to gravity varied depending on the orientation, 
from 9.59 to 10.08 m/s

2
, due a lack of calibration of the 

accelerometer axis of the Adjacent Reality Tracker. 

A. Calibration 

If the gravity component is not properly removed it creates 
an offset in the body acceleration. Offsets in acceleration are 
problematic as they cause a constant increase in the velocity 
and a huge drift in position [15]. To calibrate the gravity a set 
of points is stored and then interpolated. There are three steps 
to the calibration process. The first is to measure all the 
different possible orientations of the Oculus, and represent 
them as a cloud of points on the surface of a sphere. The 
second step is to interpolate and map this point cloud to a 
regular set of points represented as a sphere mesh. This enables 
the final step, which is to use the sphere as an input for the final 
tracking algorithm, using GPU triangle interpolation to find 
any value on the surface of the sphere suggested by [16]. We 
use this approach because reading from the surface of a sphere 
is simple, fast and computationally cheap, rather than 
constantly interpolating between samples. A set of 820 points 
containing the gravity value and correspondent orientation is 
stored for further interpolation. Gravity values are obtained by 
manually rotating the device, and storing a value when no other 
values are detected within five degrees. As the raw signal from 
the device is noisy, before measuring a value the signal is 
filtered with an exponential moving average (EMA) filter with 
a 0.1 coefficient. The filter can be expressed like this: 

𝑦𝑛 = 𝑦𝑛−1(1 − 𝛼) + 𝑥𝑛𝛼   (2) 

where 𝑦𝑛  is the filtered sample,  𝑦𝑛−1  is the previous 
filtered sample, 𝑥𝑛  is the new sample and 𝛼  is the filter 
coefficient. Fig. 2 shows four viewpoints of the set of points 
obtained during this step. 

B. Interpolation 

The measured points are now interpolated onto the vertices 
of a sphere of 60 horizontal lines and 30 vertical rings. The 
interpolation method used is the Inverse Distance Weighting 
(IDW) with 16 neighbours (n) and a power parameter (p) of 1. 
Radial Basis Functions should be considered for better 
interpolation results. 

Now that each vertex of the sphere is assigned a value, we 
can obtain a value for any orientation of the Oculus Rift unit, 
by interpolating between the points of the sphere. As the values 
are stored as the vertices of a regular triangular mesh, 
interpolated values for any point can be obtained quickly via 
the GPU. These values are the gravitational force that we 
subtract from the Y axis when carrying out the steps in Sections 
IV and V. 

IV. SIGNAL PROCESSING 

In an ideal world, the position of the unit could be obtained 
directly via the double integration of the acceleration measured 
via the sensor (once gravity is successfully removed). 
However, low-cost accelerometers do not have the required 
precision, and so to estimate the position the signal needs to be 
treated. Unfortunately, for each filtering step applied, the 
system will lose the ability to track a certain kind of motion. 
These particular cases are explained in Section IV.C below. 
Much of the related work in this field processes the signal in 
the frequency domain [11][12]. However, working in the 
frequency domain is problematic in this case, because the 
Adjacent Reality Tracker signal rate is too low for real-time 
processing – typically, real time signals which are treated in the 
frequency domain have a much higher rate, such as the 44.1 
kHz rate of an audio signal. 

A. Integration 

The proposed integration methods are the trapezoidal 
integral and the Simpson’s rule method mentioned in [11][12]. 
Although these studies suggest better results if the integration 
is performed in the frequency domain, the real-time 
requirement of our situation means that this is not possible as it 
would introduce delay. Our tests show that there is very little 
difference between the results obtained using the two 
integration methods mentioned above. However, given that the 
trapezoidal method does not make use of a future sample, it is 
faster than Simpson’s rule and therefore was chosen for this 
work. 

B. Filters 

The signal is itself very jittery and contains low frequency 
oscillations. Finite Impulse Response (FIR) filters are 
discarded as they introduce a delay in the signal. As mentioned 
above, working in the frequency domain is also not feasible 
because of the sampling rate and real-time constraints. The first 
filter implemented is the EMA, a low-pass filter. The 
coefficient has a range from 0 to 1, both excluded. The closest 
to zero it is, more delay and averaging will be introduced. The 
equation for the filter (1) can be found in Section III.A above. 
The high-pass filter used has the inverse response of the EMA. 
The bigger the cutoff frequency of the filter is, the fastest the 
signal will decay to zero. 

Figure 2. Different points of view of the cloud of 820 points representing the 

measured gravity according to the orientation of the Oculus. Darker points 
indicate a higher gravity value. 



 

𝑦𝑛 = 𝑦𝑛−1𝛼 + (𝑥𝑛 − 𝑥𝑛−1)𝛼      (5) 

where  𝛼 =
𝑅𝐶

𝑅𝐶+Δt
 , 𝑅𝐶 =

1

2𝜋𝑓𝑐
 , Δ𝑡 is the time step and 𝑓𝑐 is 

the cutoff frequency of the filter. 

In this case, the adaptive high-pass filter changes its cutoff 
frequency according to the magnitude of the body’s 
acceleration. The formula is the same as the high-pass filter (5) 
and the parameter that changes is the cutoff frequency: 

𝑓𝑐 = {
  

1

|𝑎𝑐𝑐| 𝑝
     𝑓𝑜𝑟 |𝑎𝑐𝑐| >

1

𝑝

2    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (6) 

where |𝑎𝑐𝑐| is the absolute value of the filtered acceleration 
and 𝑝 is the adaptive high-pass filter factor. 

C. Signal Processing Workflow 

Our first filtering step is to use the EMA to smooth the 
signal. Choosing the right coefficient is crucial, as it will affect 
all the rest of the process. This filter, used with the right 
coefficient, does not adversely affect the position tracking. 
Slifka [12] suggests a series of high-pass filters for 
acceleration, velocity and position. These filters are proposed 
to remove any unknown initial conditions in the signal. We 
tested each of these filters and chose only to use the 
acceleration filter and a variation of the velocity filter. Using a 
high-pass filter for the position is discarded as it would make 
the signal decay to zero. This first high-pass filter is used to 
remove a possible offset that may be present in the acceleration 
signal due to gravity compensation or residual averaged 
acceleration. The result of this step is that motions with small 
accelerations will be not considered, and motions with a 
smooth start and a sharp end will produce velocity in the 
opposite direction (Fig. 3). 

Figure 3.  Effect of the high-pass filter on the acceleration and velocity. The 
graph on the left shows the acceleration and the graph on the right its integral. 

A negative constant velocity is generated. 

Occasionally, a small offset remains in the velocity, causing 
constant movement. This problem is resolved through the 
adaptive high-pass filter applied to the velocity. This filter 
helps to remove some of the offsets created by bad 
measurements or the previous filters. A clear example would be 
when the device is tapped or hit by something: the previous 
filters won’t cancel this high and fast acceleration changes and 
will produce undesirable velocity offsets. The drawback of this 
filter is that motions that have a constant velocity will not be 
properly estimated (Fig. 4).  

 

 

Figure 4.   Effect of the adaptive high-pass filter on the velocity. The graph 

on the left shows the acceleration and the graph on the right its integral.  

V. DRIFTING 

Previous research has presented several interesting methods 
for correction of drifting, such as using a high-order 
polynomial function to approximate the displacement drift 
[15]. Unfortunately this is all done in post-processing and is not 
suitable for our real-time application. The majority of the 
drifting is caused by orientation changes as there is an 
acceleration component thus the adaptive high-pass filter does 
not stop velocity offsets. Static situations and movements that 
do not imply an orientation change do not cause too much 
drifting and are easy to estimate within this system. Setting the 
optimum variables for the system involves an inherent 
compromise. The drifting caused by fast, continuous, changes 
in orientation can be large and needs to be corrected. The 
adaptive high-pass filter solves this problem, but if the 
orientation changes during too long a time period, then the 
offset is too big to be cancelled and the position cannot be 
estimated properly (Fig. 5). 

Figure 5.  Recorded signal when orientation changes fast. The first plot 

represents the acceleration, the second the velocity and the third the position 

from the same axis. The plot shows how each step affects the signal.  

In our system we decided to decay the velocity to zero 
when the acceleration is lower than a threshold. The formula 
(7) of the threshold function is: 

𝑣 = 𝑣 · 𝑓  (7) 

𝑓 = {  𝑟𝑡−|𝑎𝑐𝑐|       𝑓𝑜𝑟  |𝑎𝑐𝑐| < 𝑡
1 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (8) 

where 𝑣 is the velocity, 𝑓 is the stop factor, 𝑟 is the range of 
the factor, 𝑡 is the threshold and |𝑎𝑐𝑐| is the magnitude of the 
filtered acceleration. The range of the factor can have values 
from 0 to 1, both excluded. If the acceleration generated is 
smaller than the threshold, the velocity will decay rapidly to 

 

 

 



zero. It has a similar effect as the adaptive high-pass filter (Fig. 
6). 

VI. RESULTS 

The initial results concerning the position tracking are 
better than expected, considering the constraints of real-time 
processing and a low-cost IMU. The user is able to move 
around the virtual environment, with some restrictions. When 
the user takes separate, marked steps, the system works as 
planned and the position is tracked. Drifting caused by 
orientation changes is eliminated effectively, and only a small 
amount of displacement can be noticed when the user finishes 
the movement. However, long movements where velocity is 
constant do not work very well, as the system counts it as a 
drifting movement and compensates for it. Likewise, slow 
movements that generate little acceleration are not properly 
tracked as they are considered an offset of the measurement. 
The system is computationally light and does not cause delays 
or latencies while being used in a 3D scene. 

Figure 6.  Properly tracked motion. The result of the system (cyan) avoids 
drifting and gets the more approximate result. The values chosen for the filters  

in this case are 0.2 coefficient for the EMA, 0.1 Hz for the high-pass filter, 50 

for the adaptive high-pass filter factor, 0.4 for the range and 0.4 for the 
threshold of the drift correction. 

VII. CONCLUSIONS AND FUTURE WORK 

The main goal of this study is to allow the user to move in 
the virtual environment. While the implemented system does 
not track the exact user’s position, and does not allow a 
perfectly natural interaction in the virtual world, it does allow 
step by step movement inside a virtual environment using only 
an Oculus Rift and connected laptop. No power cable is 
required as the Oculus can be powered via USB connection to 
the laptop.  

The Oculus unit needs to undergo a calibration step prior to 
be using with our developed system. One of our future tasks is 
to determine whether the differing gravity values (which 
necessitate the calibration) are unique to each individual unit, 
or whether calibration carried out for one Oculus unit is also 
valid for another. Furthermore, in this study the Allan variance 
[17] is not tested, meaning that changes in temperature may 
affect the recorded values from the sensor, and thus gravity is 
not properly subtracted. Other IMUs could be used, but some 

steps should be added, like sensor fusion, and others should be 
removed, like gravity compensation if the accelerometer is 
properly calibrated. 

The next step for this project is testing the system to 
measure user reactions, to test whether the sensation of motion 
sickness is eliminated.  
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