MOTIVATION

- Hearing aid users complain about loudness.
- Clinical audiological methods don’t reflect real-life situations (Mueller and Bentler 2005).
- How should the laboratory be to reflect reality?

RELATED WORK

- Lower loudness preference in the laboratory than the field (Smeds et al. 2006).
- Loudness studied in the laboratory (Heeren et al. 2003, Appell 2002) to predict loudness perception and ratings.
- Visual cues play a role in the laboratory. Sounds are perceived less loud with visual cues (Fastl 2004).

METHOD

- Loudness and annoyance ratings of vehicle noise in the field:
 - 4 different vehicles (car, motorbike, van, street sweeper)
 - 5 driving urban actions (stand by, accelerate, 30 km/h, 50 km/h, break to stop) and 3 for the street sweeper (stand by, brushes on, brushing forward).
 - 72 rated driving actions per participant.
- Participants:
 - 19 NH listeners (9 female, mean age 50 yrs, SD: 19.2, PTA=3.8 dB HL, SD: 4.7)
 - 20 HI (12 female, mean age 72 yrs, SD: 12.0, PTA=38.5 dB HL, SD: 6.8) with NAL-NL2 and trueLOUDNESS (Oetting et al. 2018).
- Categorical Loudness Scale (CLS) and ICBEN numerical annoyance scale (0-10).

- Field experiments recorded with a 360º camera (Xiami Mi Sphere Camera), a tetrahedral microphone (Core Sound TetraMic) and a level meter.
- Stimuli available at https://gerardllorach.weebly.com/work.html

RESULTS

- Ratings in the field were lower than predicted for stimuli below 40 sones.
- Annoyance ratings were highly correlated to loudness ratings ($r = 0.82$, $p<0.001$).
- Little variation in the driving actions and consistent ratings of the participants.

CONCLUSION

- Reality replication (in progress):
 - Same acoustic levels with different laboratory conditions, e.g., mono, stereo, first-order-ambisonics; desktop screen, head-mounted display, CAVE.
- Level adjustment:
 - Participants choose the gain of the stimuli to match reality.

FUTURE LABORATORY EXPERIMENTS

- Participants:
 - 19 NH listeners (9 female, mean age 50 yrs, SD: 19.2, PTA=3.8 dB HL, SD: 4.7)
 - 20 HI (12 female, mean age 72 yrs, SD: 12.0, PTA=38.5 dB HL, SD: 6.8) with NAL-NL2 and trueLOUDNESS (Oetting et al. 2018).
- Categorical Loudness Scale (CLS) and ICBEN numerical annoyance scale (0-10).

- Field experiments recorded with a 360º camera (Xiami Mi Sphere Camera), a tetrahedral microphone (Core Sound TetraMic) and a level meter.
- Stimuli available at https://gerardllorach.weebly.com/work.html

ACKNOWLEDGEMENTS

This work has received funding from the EU’s H2020 research and innovation programme under the MSCA GA 675324 (ENRICH) and the Deutsche Forschungsgemeinschaft (DFG, Cluster of Excellence EXC 1077/1 "Hearing4all" and SFB1330 Project B1 and C4).

REFERENCES

